
redundant routing, in various hostile scenarios. Compared
with Kademlia redundant routing, Sophia is able to increase
successful routing rate up to 35% for the same degree
of redundancy. This means that Sophia can tolerate the
same fraction of malicious nodes than Kademlia, with less
parallel paths, yielding important traffic savings. Moreover,
Sophia evolves towards better quality paths as it receives
more feedback from transactions. This fact allows Sophia to
dynamically recover from unexpected attacks.

II. RELATED WORK

For secure forwarding in DHTs, there are few works in
the literature that present, from the viewpoint of robustness,
redundancy as just an alternative with its own advantages
and shortcomings; rather, recent results have focused only
on its benefits, paying no attention to the role that the
quality of the intermediate routers play on delivery paths.
For example, [12] proposed first to route normally, and then
perform a failure test to decide whether or not routing had
gone wrong. If the test failed, routing was retried but this
time with a secure routing protocol. A similar idea was
adopted in Cyclone [13], but guaranteeing d independent1
paths between every two nodes in the overlay. Finally,
Harvesf and Blough [14] tried to create d disjoint paths by
equi-spacing 2d−1 replicas on the Chord ring. Querying the
2d−1 replicas in parallel, they were able to increase routing
robustness. The main problem of using independent paths
is the poor asymptotic guarantees it can provide on the
success rate without overloading any node (as the value of
d increases).
We can find the following works that attempt to improve

the quality of delivery paths:
In [9], the authors overview the potential benefits of

reputation on routing, hypothesizing an abstract reputation
system with both false positives and false negatives. Al-
though the results are promising, this work does not include
any algorithm to sustain their arguments.
In [15], the authors propose SPROUT, a DHT routing

protocol that increases the odds of message delivery by using
social links. SPROUT defines a reputation model based upon
social distance to avoid routing messages through dishonest
peers. However, it relies on social links that may not be
always available.
Another related algorithm is the Feedback Forward Pro-

tocol (FFP) [16]. In FFP, each peer captures evidence to
predict the routing behavior of its neighbors. Based on this
evidence, a node can find out whether a given neighbor did
a good routing job, and select it as a next-hop neighbor
if it generally forwards messages. The problem with this
protocol is that malicious peers can spread false feedback,
a vulnerability that can be exploited to carry out denial of
service attacks against particular peers.
1Two paths are said to be independent if they share no common node

other than the source and the destination

The closest related work we are aware of is our own
research presented in [17]. In [17] authors propose, as a
case of study, a reputation mechanism which considers
only a node’s routing operations to select future forwarders.
Although this work is in line with the present article,
there exist several and important differences between both.
First, this protocol does not maintain a persistent database
of historical transactions to make routing decisions; past
transactions with a certain neighbor are kept until it becomes
off-line or changes its identity. However, exhaustive research
has been focused on providing mechanisms to ensure the
persistence of identities in DHTs [18][19][20]. Therefore,
we can assume the persistence of identities and thus exploit
the benefits of keeping a local history of neighbors, specially
in terms of trust convergence. Second, they do not consider
the advantages of iterative routing to this kind of reputation
mechanism. Finally, authors in [17] did not propose any
architecture to develop this technique in a real environment.
Compared with prior work, Sophia is driven towards im-

proving the quality of routing paths by using only historical-
direct feedback, thus avoiding the introduction of additional
network overhead. This makes Sophia immune to false
rumors while achieving significant improvements.

III. BACKGROUND
A. Kademlia
Kademlia [21] is largely the most deployed DHT in

the Internet today (e.g. Bittorrent, OverNet). Kademlia is
a prefix-matching Distributed Hash Table characterized by
the use of the XOR metric. The XOR metric measures
the distance between two nodes as the numeric value of
the exclusive OR of their IDs. Each Kademlia node has
a random m-bit and maintains a routing table of O(m)
k-buckets. In every k-bucket, there are at most k entries,
each leading to any node within XOR distance [2i, 2i+1)
from itself, where k is a redundancy factor for tolerating
k−1 routing failures. Given a key K, the original Kademlia
routing protocol iteratively queries α (α ≤ k) users with a
FIND_NODE RPC for the closest k nodes to key K on basis
to the XOR metric. In each step, the returned candidates
from previous RPCs are merged into a sorted list from which
the next α nodes are chosen. The procedure is repeated until
the node responsible for key K is found.

B. Threat Model and Assumptions
In this work, we assume the following threat model. A

Kademlia overlay is infiltrated over a certain period of time
by malicious users which join the overlay. After some time,
the network has N(1− f) honest nodes and Nf malicious
nodes, where f represents the fraction of attackers. Further,
we assume that the attackers are uniformly distributed along
them-bit identifier space. That is, we adopt the random fault
model, where each peer is malicious with some probability
f , irrespective of the other nodes. This means that the
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attackers cannot assign their identifiers, safeguarding the
overlay against Sybil Attacks [22].
A wide spectrum of attacks preventing honest nodes

from communicating altogether has been identified in the
literature. In addition to Sybil attacks, the attackers can
conduct Eclipse attacks [23] to corrupt the routing tables of
honest peers, and forwarding attacks to block the resolution
of keys. Although Eclipse attacks are not negligible, dealing
with such attacks is out of the scope of this work.
We focus in this paper on forwarding attacks, which are

not less disruptive than Eclipse attacks, as their objective is
to block the resolution of keys. Suppose an honest user u

wants to find a key K. In a standard DHT, u asks another
node which u knows to be closer to K, which forwards
to another even-closer node, and so on until key K is
found. Attackers can disrupt this process by spreading false
information about their closeness to a particular key, by
intercepting routing queries or responding with “no such
key” messages.
For this work, we consider two types of forwarding

attacks:
Uncoordinated Attacks. Uncoordinated attacks are

launched by the individual attackers independently. In this
attack, an attacker drops each incoming request in an attempt
to censor the access to as many key-value pairs as possible.
For the other aspects the attacker acts as a regular Kademlia
client. This means that attackers answer to PING RPC
messages in order to be part of the network.
Collusion Attacks. In this attack, we assume that there

is an adversary who coordinates all the malicious clients
to punish honest users. In this case, the attackers create a
fictitious route for each query that terminates at the closest
attacker to the destination key in an attempt to deceive the
source into thinking that the key-value pair does not exist.
To generate the artificial routes, the adversary bootstraps
all the malicious instances into a parallel Kademlia over-
lay network. In this way, every time a request touches a
malicious client it gets trapped into the overlay of malicious
instances. Note that when a Kademlia node receives any
message, it inserts (or updates) contacted nodes into the
appropriate routing table bucket. Exploiting this fact, each
time a regular node contacts an attacker it introduces more
adversaries into its own routing table. Finally, if the query
is from a malicious submitter, the regular routing table is
used in order to minimize the routing effort of the malicious
coalition.
We conclude this part with the final assumption that

users have non-spoofable semi-permanent identifiers to en-
sure the integrity of the transactions. This is why we use
the hash over a public key to generate identifiers as in
S/Kademlia [24]. To prevent users from spoofing the identity
of another client, honest users use a challenge-response
protocol for validating identifiers similar to that in [25].

C. State-of-the-art countermeasures

In the particular case of Kademlia, key resolution is
vulnerable in two ways. The first is that in each step, the set
of candidates returned from a previous RPC are merged into
a list, ordered by increasing XOR distance to the destination
key. This merging process facilitates that a single malicious
user can make a lookup fail by returning the hypothetical
α closest candidates to the key. In this sense, Kademlia
behaves as a conventional DHT, in which there is exactly
one routing path from the source to the destination. Even
assuming a uniform distribution of the malicious users along
the identifier space, this procedure leads to an asymptotically
small probability of routing successfully.
More formally, let ξh

i denote the event that a routing oper-
ation that requires h hops fails at the i-th step. It is not hard
to see that the probability of failure can be approximated by
Pr {Failure} = 1−Pr

� � h
i=1 ξ̄h

i

�
= 1−(1−f)h, which

is asymptotically 1 when h −→∞. This result gave birth to
redundant routing which tries to improve this bound through
the use of redundancy, in the sense of routing over multiple
independent paths. Given the high complexity of identifying
honest users, the logic behind this technique was to trade
complexity for cost. Works like Cyclone [13] and [14] made
use of redundant routing to increase the probability of query
success. Using d independent paths, they could reduce the
probability of query failure by an exponential decay factor:

Pr {Failure} ≤ (1− (1− f)h)d, (1)

where (1− f)h is the probability that all intermediate peers
on the path are good. Redundant routing has been adopted
by S/Kademlia [24] to improve the probability of routing
successfully.
In spite of this improvement, the problem with these

solutions is that redundant routing is not asymptotically
fault-tolerant, i.e., they cannot prevent Pr {Failure} from
becoming asymptotically large for a fixed d. To bet-
ter understand this, consider that, in order to reach a
random user in the DHT, the routing protocol requires
c logb N hops on average. Then, it can be easily seen
that Pr {Failure} =

�
1− (1− f)c logb N

� d, which is
approximately exp

�
−dN c ln(1−f)/ ln b

�
. This means that to

maintain Pr {Failure} constant, d must be polynomial
in N . That is, if exp(−dN c ln(1−f)/ ln b) ≤ ε2, d must be
at least ln(1

ε )N−c
ln(1−f)

ln b . Consequently, redundant routing
might lead to overloading the weak peers in the effort
of maintaining Pr {Failure} ≤ ε. This is the reason
why we introduce historical information and avoid merging
forwarding candidates to enhance the forwarding process
(see Section IV).

2Note that by setting ε = N−k , this bound is a high probability bound,
as Pr {Success} = 1− Pr {Failure}.
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The second vulnerability is that Kademlia replicates each
key-value pair over the k closest nodes. For small val-
ues of k, this number of replicas might be too small to
guarantee that a key-value pair can be found w.h.p. after
adversarial deletions. To address this problem, the authors
of S/Kademlia [24] added a sibling list of length η·s per node
to ensure that Kademlia routing protocol reaches at least s

siblings of the destination key w.h.p. In Kademlia jargon,
the siblings of a key are the nodes whose XOR distance to
the key is minimal. As shown in [24], a value of η ≥ 5 is
enough to make sure that routing operations converge to at
least s siblings w.h.p. and hence, allow Kademlia to store
data in a safe way.
In our view, it is interesting to analyze how Kademlia and

Sophia perform when they are armed with this countermea-
sure. Hence, we will make use of a sibling list of size 2Sz ,
where Sz = log2

�
N
η·s

�
denotes the prefix length such that

1
2

N
η·s < Sz ≤

N
η·s . This way, we ensure that there exists at

least s nodes whose identifier shares the first m − Sz bits
of any given key.

IV. SOPHIA: SYSTEM DESIGN
As argued in Section I, we propose to fortify routing using

only first-hand information about the success or failure of
a routing operation. This is the main reason why iterative
routing fits neatly into our solution. With iterative routing,
the requester asks each intermediate node along the routing
path about the next hop. Hence, the requester can accrue
personal experience about the routing behavior of interme-
diate forwarders and rate them according to the result of the
routing operation.
To mitigate the effect of bogus results in the forwarding

process (see Section III-C), Sophia uses redundancy without
merging forwarding candidates: each parallel path is an
isolated lookup to the same key. This design decision makes
Sophia more resilient to spurious forwarders retrieved by
malicious nodes. Additionally, keeping paths isolated from
each other is a clearer way of gathering historical informa-
tion: the success/failure of a certain path affects only actual
forwarders of that path (see Section IV-C).
In Sophia, each node synthesizes direct observations on

the routing behavior of its neighbors in form of a trust
ratings as a result of its routing operations. These ratings
are stored and updated in a data structure called Personal
History (PH). As more observations are available, the rat-
ings about neighbors become progressively more reliable
and eventually converge, enabling nodes to identify which
forwarders are more likely to route successfully towards the
destination.

A. Architecture
Sophia is a generic security technique and it is, therefore,

applicable to any DHT. Since the selection of the next
hop is individually done by each host, nothing prevents a
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Figure 1. Architecture of Sophia.

regular participant from communicating with any computer
armed with Sophia and vice versa. Also, the use of iterative
routing gives Sophia the skill to improve the quality of
routing paths with no extra overhead. It is important to note
that iterative routing provides more feedback than recursive
routing does; for each lookup, the requester inspects all the
intermediate hops along the routing path. Consequently, the
time necessary to identify reliable nodes is smaller with
iterative routing than with recursive routing.
Fig. 1 presents Sophia’s architecture, which will be de-

tailed in the following subsections. Moreover, that picture
shows how a Sophia node performs a lookup. In the forward-
ing process, a malicious node drops the lookup, making the
routing operation fail. Consequently, the requester applies
a trust policy (Section IV-C) —e.g. punishing all interme-
diate nodes or only the last hop— to evaluate the routing
behavior of intermediate hops. After rating each hop, their
corresponding trust values are updated into the requester’s
Personal History (Section IV-B) using a trust calculation
algorithm (Section IV-D). As a result, the requester accu-
mulates more knowledge about the behavior of its neighbors
and will presumably perform a better neighbor selection
(Section IV-E) for the future lookups.

B. Personal History

The Personal History (PH) is the main data structure of
our architecture. In it, a node stores the trust values for
their neighbors. The PH presents the same structure of a
standard routing table. For each entry of the PH, we have a
list of candidate forwarders of size h. The value of h must
guarantee, with high probability, that there exists at least
one honest candidate for each entry. By a reasoning similar
to that developed for the sibling list, it can be shown that
h = Ω(logN) is sufficient to guarantee this property. The
proof has been omitted due to space constraints.
From now on, we will refer to each entry of the PH by

the term h-bucket.
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C. Local Trust Policies
The provisioning of a criterion about how to evaluate

nodes involved in a transaction is given by the trust policy.
In our system, a transaction corresponds to the process
of constructing a routing path. Therefore, the result of a
transaction can be formalized well using a binary value, a
value of 1 for a successful transaction and 0 for a failure.
Basically, in Sophia a trust policy is an algorithm which

decides the input value given to the trust calculation (see
Section IV-D). Such decision is based on the result of a
transaction and it is independently applied to all forwarder
nodes responsible for that transaction.
In case of sending a lookup using α parallel paths, we

consider α isolated transactions —as mentioned in Section
IV. Consequently, the trust policy is applied in each of these
α paths. Thus, irrespective of whether a lookup succeeds or
not, the trust policy evaluates forwarder nodes depending
upon whether their respective paths were successful or not.
For evaluating our system we developed two policies:
Pessimistic Policy. Pessimistic Policy gives a positive

trust score of 1 to all nodes along the path if a transaction has
been successful. On the contrary, Pessimistic Policy punishes
all nodes along the path giving a trust score of 0 when
a transaction fails. Note that this policy could erroneously
punish cooperating nodes (false positives). However, since a
node evaluates its neighbors only with its own transactions,
without any other external information, this policy is more
conservative in misclassifying malicious nodes as good ones.
Oracle Trust. To compare the performance of local

trust policies we implemented an Oracle. The Oracle is,
theoretically, the best trust policy possible since it evaluates
nodes depending on whether they are malicious or not
(independently of the transaction result). Clearly, this kind of
policy cannot be materialized in the real world. Nonetheless,
from our point of view, it is an accurate way to compare any
local trust policy with the theoretically best one.

D. Trust Calculation
A trust calculation algorithm computes trust values which

represent the routing behavior (RB) of a node’s neighbor-
hood. In this section, we adopted some approaches from the
literature to design a trust algorithm that properly deals with
routing particularities.
For the sake of clarity, we will describe our algorithm fol-

lowing the decomposition and analysis framework proposed
in [10]:
Source of Information. We defined as input for the trust

system first-hand observations on the success or failure of
lookups, a vision aligned with representative trust systems
such as [26]. Based on this input, the information that the
calculation algorithm finally receives are the binary values
given by the trust policy after processing a transaction.
Information Type. We decided to take into account a

node’s good and bad behavior. This twofold consideration

of a node’s activity will provide a broader notion of its
behavior and will be useful in order to response to network
or behavioral changes (e.g. traitors) [10].
Temporal Aspects. It is important to weight the im-

portance of recent and historical transactions [10]. In this
respect, we propose to compute the routing behavior value in
an aggressive short-term history fashion, in order to rapidly
tackle with unexpected defectors [10][26].
Trust Metric. To represent the degree of trust a node

deposits in a neighbor, we use a real value [0, 1] similar to
other reputation systems such as [27].
Calculation. Trust calculation is performed locally in

every node in the network to obtain its own view of trust.
Finally, the routing behavior value (RB) of a node ni is
calculated as follows:

RB (ni) = λ ·

	 t
j=t−d RB(ni,j)

d
+ (1−λ) ·

	 t−d−1
j=0

RB(ni,j)

t−d
,

where λ ∈ [0, 1] determines the weights given to the most
recent d transactions from the total t.

E. Select-Best as a Neighbor Selection Policy

At this point, we have developed means to calculate and
store the trust values of neighbors. However, we also need
a criteria to update a node’s routing table depending on
its neighbors’ trust scores, a role adopted by the neighbor
selection policy. To measure the potential of our solution,
we implemented the policy that maximizes the routing
improvement. This policy updates a bucket bi with the k

highest trust-valued neighbors in the ith h-bucket of PH.
From now on, we will refer to this policy as Select-Best.

V. VALIDATION

A. System Model

Our simulation scenario consists of a fully populated
Kademlia tree (i.e. 2m nodes). Such scenario forces lookups
to perform the maximum number of possible hops since
every requested key has an owner. Additionally, a lookup
will successfully terminate if any lookup path reaches the
requested key sibling zone (Sz) (see Section III-C). The
sibling zone is a commonly used security technique intended
to perform a secure broadcast around a key [24]. We will
test different values of Sz in our simulations.
In order to test routing, every node in the network

injects periodically (each δ seconds) lookups to uniformly
distributed random keys. Moreover, the amount of lookups
sent by a node is divided in transitory lookups (Tl) and
stationary lookups (Sl). We will store statistical data only
for stationary lookups Sl; transitory lookups are intended
to bootstrap the network and they are not considered in the
evaluation at all.
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Table I
GENERAL SIMULATION SETTINGS.

Parameter Value
Number of Nodes (N) 8, 192 nodes
ID Length (m) 13
Redundant Paths (α) [1 → 3]
k-bucket size (k) 3
Sibling Zone (Sz) 0 bits, 4 bits
Transitory Lookups (Tl) 50
Stationary Lookups (Sl) [100 → 1000]
Lookup Period (δ) 36 sec.
Fraction of Malicious Nodes (f) [0.0 → 0.6]
Attack Type Individual, Collusion
History Bucket Size (h) 10
Short Term History Transactions (d) 3
Short Term History Weight (λ) 0.7

B. Experimental Results
In this section, we address the results obtained after

implementing and evaluating our prototype. Concretely,
we implemented Sophia, over the Kademlia protocol [21],
in Erlang3. In this sense, Erlang provides a high degree
of scalability and concurrency for developing large-scale
distributed systems. Additionally, our simulator has been
carefully designed and developed to ensure the correctness
of the experimentation. Furthermore, the simulations shown
in this article are the result of several months of work and
exhaustive testing; this fact make us feel confident about
the validity of our results and final conclusions. For each
configuration (Table I), each simulation was run 20 times
and the results were averaged to obtain the plotted values.
We are mainly interested in assessing 5 aspects of our

system, and comparing them with redundant routing in
Kademlia. Firstly, we evaluate how many lookups Sophia
needs to provide a greater routing robustness compared with
Kademlia redundant routing, that is, convergence. Secondly,
we analyze how the lookup path management of Sophia
affects the average path length. Thirdly, we assess the self-
adjustment of both approaches when a fraction of nodes
unexpectedly start to misbehave. We also evaluate lookup
success rates for several fractions of adversaries and threat
models. Finally, we detail how transactions are distributed
between cooperating and adversarial nodes (load balancing).
The main metric used in the evaluation is the Lookup

Success Ratio (LSR). We define this metric as follows:

LSR =
Slookups

Tlookups
, (2)

where Slookups is the amount of successful lookups
achieved by nodes from the total number Tlookups of lookups
sent.
Trust Convergence. The performance of Sophia is re-

lated with the amount of transactions exchanged with neigh-
bors. Figures 2 and 4 show the degree of routing robust-
ness under attack (measured as LSR) provided by Sophia

3http://www.erlang.org/

and Kademlia and how it evolves along the time. LSR
is measured by intervals of 100 stationary lookups. The
measurement starts from scratch in each interval. During
the transitory period of a simulation, each node injects 50
queries (Tl) into the network. As can be observed in graphics
2 and 4, this reduced number of transitory lookups is enough
for Sophia to obtain a greater LSR in the first interval of
measurement compared with Kademlia, for the same degree
of redundancy (α).
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(b) Sz = 4, 20% Collusion Attack

Figure 2. Lookup Success Ratio evolution of Kademlia and Sophia when
20% of nodes perform a Collusion Attack for different values of Sz and
α.

Results in Fig. 2 belong to a hostile scenario where
20% of nodes collude to harm cooperating nodes. The
difference between both graphics lies in the Sibling Zone
(Sz) configuration; in the first graphic Sz = 0 whereas
in the second one Sz = 4. The evolution of Sophia is
significant in both cases; in the first interval of measurement,
Sophia for α = 2 provides the same or greater routing
robustness than Kademlia for α = 3. The main cause is that
transitory lookups are enough for Sophia to identify and
evict a fraction of adversarial nodes from routing tables.
Non-surprisingly, as more observations are available, the
ratings about neighbors become progressively more reliable.
This fact is clear in Fig. 2; for instance, when Sz = 0, Sophia
outperforms Kademlia in approximatelly 30% for the same
α.
Despite Kademlia slightly enhances the LSR when in-

creasing α, it does not learn from neighbors, so the LSR
remains lower than Sophia. Note that, to provide a certain
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threshold of routing robustness, Sophia needs less parallel
paths than Kademlia. Thus, reducing α from 3 to 2 repre-
sents a network traffic saving of 33%.
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Figure 3. Sophia’s malicious nodes avg. in routing table buckets, depend-
ing on the amount of lookups sent per node (30% Individual Attackers,
α = 2).

It is worth mentioning existing differences in LSR de-
pending on Sz configurations (Fig. 2). Kademlia improves
noticeably when introducing a larger Sz . The reason is that a
larger Sz implies a shorter Average Path Length, and this fact
increases lookup success probability. However, Sophia takes
a greater advantage than Kademlia of a larger Sz . The main
reason is that, in the forwarding process, nodes avoid using
the lowest k-buckets of the closest nodes to the requested
key. Since a node rarely uses its own lowest k-buckets to
perform lookups, it cannot discern between cooperating and
adversarial nodes in these k-buckets. Consequently, if an
incoming lookup request asks for nodes placed in these
lowest k-buckets (especially when Sz = 0), these nodes will
be retrieved without being properly identified as good/bad
forwarders. This thesis is corroborated by Fig. 3, where we
can observe the evolution of a Sophia node routing table,
measured as the average fraction of malicious nodes per k-
bucket.
Fig. 4 corresponds to a hostile scenario where 30% of

nodes perform an Individual Attack.
Results depicted in Fig. 4 follow a similar fashion than the

previous experiment. However, results for this threat model
are better for both systems since an Individual Attack is
less aggressive than a collusion. Again, Kademlia obtains
a constant and lower LSR along the experiment, compared
with Sophia.
Therefore, Sophia is able to significantly improve routing

resilience under moderate traffic conditions.
Lastly, we want to compare the convergence speed and

routing resilience of Sophia using Pessimistic Trust policy
versus Oracle Trust (Fig. 5). As expected, the Oracle dis-
cerns better and faster between cooperating and adversarial
nodes. The main difference between both policies resides
in the number of lookups needed to converge: in the first
interval (after Tl and the first 100 stationary lookups) the
Oracle outperforms Pessimistic Policy in 13% for α = 2
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(a) Sz = 0, 30% Individual Attackers
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(b) Sz = 4, 30% Individual Attackers

Figure 4. Lookup Success Ratio of Kademlia and Sophia when 30% of
nodes perform an Individual Attack for different values of Sz and α.
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Figure 5. Lookup Success Ratio comparison of Sophia using Pessimistic
Trust policy versus Oracle Trust, when 20% of nodes perform a Collusion
Attack and Sz = 4.

and 12% for α = 3. The reason is that the Oracle incurs no
false positives, being faster to identify misbehaving nodes.
However, Pessimistic Policy evolves reducing the LSR dis-
advantage compared with Oracle considerably at the end of
the experiment. As a conclusion, although the convergence
of the Oracle is clearly faster, the performance of both
policies is limited by the amount of lookups performed,
especially to identify nodes placed in the lowest k-buckets
of the routing table.
Average Path Length (APL). Table II compares APL

obtained by Sophia and Kademlia with different values of Sz

and redundancy configurations in the absence of adversarial
nodes. When Sz = 0, lookups must strictly find the key
owner. This fact increases APL in ≈ 1.2 hops compared
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with Sz = 4 and the same α. Such reduction of the APL,
due to a larger Sz , improves significantly routing resilience
in both systems as depicted in figures 4 and 2.

Table II
APL IN ABSENCE OF ADVERSARIAL NODES.

Sophia Kademlia

Sz = 0
α = 1 ≈ 4, 4 ≈ 4, 3
α = 2 ≈ 4, 4 ≈ 3, 8
α = 3 ≈ 4, 4 ≈ 3, 5

Sz = 4
α = 1 ≈ 3, 1 ≈ 3, 1
α = 2 ≈ 3, 1 ≈ 2, 7
α = 3 ≈ 3, 1 ≈ 2, 5

As we can observe in Table II, Kademlia reduces its
APL depending on α. This fact is caused by the Kademlia
lookup algorithm: in Kademlia a lookup is sent in paral-
lel to α nodes. Then, contacted nodes in each path are
merged and the α closest nodes to the key are selected
to continue forwarding the lookup. In case of reaching
the desired sibling zone or detecting that there is not any
closer node to the key, all parallel paths simultaneously
terminate, decreasing the APL —see Section III. However,
this approach is significantly vulnerable to bogus nodes
retrieved by attackers [24]. On the contrary, Sophia uses
redundancy without merging forwarding candidates: each
parallel path is an isolated lookup to the requested key. This
fact makes the APL insensitive to changes in α, because
parallel paths terminate independently of each other.
Self-Adjustment. In this part of the experimentation, we

address how Kademlia and Sophia tackle with unexpected
behavioral changes of nodes. Fig. 8 corresponds to an
individual attack where suddenly (at lookup 150) 30% of
nodes start dropping lookup requests. Additionally, both
systems are configured with Sz = 0 and different degrees
of redundancy.
As we can observe in Fig. 8, the attack starts at the second

interval of measurement. At this point, we can see how
both systems present a similar LSR downtrend. Nonetheless,
whereas at the third interval Kademlia maintains the same
degree of reliability loss, Sophia starts to slow down the
impact of attackers in the network. From the third interval
onwards, Kademlia maintains a static LSR of 55% for
α = 2 and 78% for α = 3 because attackers coexist with
cooperating nodes inside routing tables. However, Sophia
initiates a notably improvement as it identifies malicious
nodes, evicting them from routing tables. In conclusion,
Sophia is capable to dynamically recover from unexpected
attacks, restoring the lost routing reliability during the attack.
Success Rate. In the following subset of experiments, we

analyze routing resilience obtained by Sophia and Kademlia
in terms of LSR for different fractions of malicious nodes.
Moreover, we simulated both individual (Fig. 7) and collu-
sion (Fig. 6) attacks. LSR in both systems is measured for
different degrees of redundancy (α) and different amounts
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Figure 8. Sophia and Kademlia self-adjustment comparison activating
30% of individual attackers at lookup 150.

of lookups sent per node —concretely 100, 500 and 1000
lookups. Finally, we configured Sz = 0 for all simulations
in this subset of experiments.
In Fig. 6a, we can see how after 100 lookups per node

Sophia provides a higher but moderated LSR improvement
compared with Kademlia. Such improvement is more noto-
rious when the fraction of adversarial nodes (f ) is small. For
instance, when f = 5% Sophia advantages Kademlia in 14%
for α = 1 and over 23% when α = 2, 3. However, when
f exceeds 30%, the performance of both systems decreases
dramatically. We should notice that, in line with previous
experiments, the performance of Kademlia is static along the
time. In contrast, Sophia evolves providing a better degree
of robustness This fact is especially clear in graphics 6b and
6c. We want to highlight results obtained after 1000 lookups
sent per node: Sophia obtains an average LSR enhancement
of approximately 30% for α = 2 and 35% for α = 3 when
5% ≤ f ≤ 20%, compared with Kademlia.
In Fig. 7 we present results of introducing several fractions

of individual attackers. Sophia clearly outperforms Kademlia
for α = 1, 2 in 7a —100 lookups sent per node. However,
differences for α = 3 are less significant, especially when f

attains at its highest values. Thus, false positives introduced
by Sophia’s Pessimistic Trust Policy delay to correctly
discern between cooperating and adversarial nodes, when
f attains extreme values. Nevertheless, in Figures 7b and
7c we can see how Sophia evolves, increasing significantly
LSR.
In conclusion, Sophia demonstrates that the utilization of

first-hand observations to reinforce routing is beneficial in a
wide spectrum of hostile scenarios.
Load Balancing. In the last part of the evaluation,

we want to analyze how Kademlia and Sophia distribute
transactions between malicious and cooperating nodes.
Fig. 9 presents the Cumulative Distribution Function

(CDF) of the number of received transactions per node after
the first 100 stationary lookups (first interval). Moreover,
simulation in Fig. 9 was executed with 30% of nodes
performing an Individual Attack and α = 2 for both systems.
We can notice that the distribution of received transactions
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(c) 1000 Lookups

Figure 6. Lookup Success Ratio for different fractions of adversarial nodes performing a Collusion Attack.
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Figure 7. Lookup Success Ratio for different fractions of adversarial nodes performing an Individual Attack.
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Figure 9. Load Balancing comparison between Kademlia and Sophia when
30% of nodes perform an Individual Attack and α = 2, after 100 lookups
sent per node.

for Kademlia nodes is roughly equal, irrespective of whether
nodes are malicious or not. This fact was expected since
Kademlia does not evict malicious nodes from routing
tables, unlike Sophia. In the case of Sophia, the fraction
of cooperating nodes receives the majority of lookups,
providing then a higher degree of routing robustness.
Fig. 10 depicts how Sophia distribution of received

transactions evolves over time. In line with the previous
experiment, Fig. 10 demonstrates how nodes increasingly
avoid using attackers, as more lookups are performed.

VI. CONCLUSIONS
In this paper, we described Sophia, a novel and generic

security technique which combines iterative routing with
local trust to fortify routing in DHTs.
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Figure 10. Load Balancing evolution of Sophia depending on the number
of lookups sent per node (30% Individual Attackers, α = 2).

We obtained significant improvements comparing the per-
formance of Sophia with Kademlia redundant routing in the
presence of attackers. Compared with Kademlia redundant
routing, Sophia is able to increase successful routing rate
from 10% to 35% for the same degree of redundancy. This
means that Sophia can tolerate the same fraction of mali-
cious nodes than Kademlia with less parallel paths, yielding
important traffic savings. For instance, Sophia with 2 parallel
paths provides a greater routing resilience than Kademlia
with 3 parallel paths under moderate traffic conditions. This
fact implies a network traffic reduction of 33%. Moreover,
Sophia continously evolves towards better quality paths as
it receives more feedback from transactions. Hence, Sophia
is capable to dynamically recover from unexpected attacks,
restoring the lost routing reliability during the attack.
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Therefore, Sophia is the first representative example
which strictly uses first-hand observations to reinforce rout-
ing.
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