

An Overlay Network Simulation Framework
http://ants.etse.urv.es/planetsim

User and developer tutorial

Jordi Pujol Ahulló <jordi.pujol@estudiants.urv.es>
Marc Sánchez Artigas <marc.sanchez@urv.net>

Pedro García López <pedro.garcia@urv.net>

http://ants.etse.urv.es/planet

PlanetSim Tutorial i

Contents

1 Introduction...1

2 Related work...4

3 Features ...6

4 Simulator Architecture ..7

4.1 Common API for structured overlays and Freepastry........................7
4.2 PlanetSim Layered Design ..9

4.2.1 Application Layer ..11
4.2.2 Overlay layer ..12
4.2.3 Network layer ...13

4.3 PlanetSim kernel ...14
4.3.1 Configuration Attributes ..15
4.3.2 Factories...16
4.3.3 RouteMessagePool ..17
4.3.4 Behaviours ...17

4.3.4.1 Runtime Execution ..17
4.3.5 Results ...19

5 Developer Tutorial ..22

5.1 Main application: Basic structure ...22
5.1.1 Building the Main Application Class..22
5.1.2 Specifing new configuration within MCF...................................24

5.2 Layer 2: The Application Layer ..25
5.2.1 Application example ...25
5.2.2 Message example ..27
5.2.3 Configuration attributes to modify...28

5.3 Layer 1: The Overlay Layer ...28
5.3.1 Node example (Trivial P2P overlay) ...29

6 Getting Results ...38

6.1 Developer Guide..38

7 Future Work ..41

7.1 TCP/IP Wrapper ..41
7.2 Gathering Statistics ...41

8 Annexes..42
 A. Chord implementation specification ...43
 B. Symphony implementation specification ..46
 C. Properties: configuration files specification ..48

9 References ...59

PlanetSim Tutorial ii

Figures

Figure 1. Common API Diagram... 8
Figure 2. Layered Architecture.. 11
Figure 3. Simulator kernel ... 15
Figure 4. Loading Process of the Configuration.. 16
Figure 5. A Chord network with 1000 nodes, which their Ids are randomly built.............. 20
Figure 6. A Symphony network with 1000 nodes, which their Ids are randomly built....... 21
Figure 7. Basic structure for a main application.. 22
Figure 8. Main application extending of GenericApp .. 23
Figure 9. Main application using GenericApp ... 23
Figure 10. Example of lines into MCF... 24
Figure 11. Reconfiguration of the simulator context ... 24
Figure 12. HelloWorld Application example .. 26
Figure 13. Message implementation example .. 27
Figure 14. Node implementation for the Trivial P2P overlay .. 35
Figure 15. OverlayProperties implementation for Trivial P2P Overlay 36
Figure 16. Example of results configuration into a SCF ... 40
Figure 17. RouteMessage Flow in Chord ... 44
Figure 18. Properties loading process .. 48
Figure 19. PLANETSIM/conf/master.properties MCF... 51
Figure 20. PLANETSIM/conf/symphony.properties SCF.. 57

PlanetSim Tutorial 1

1 Introduction

In the last years, we have experienced an increasing interest in
peer to peer systems from research settings but also from
commercial vendors because of its mainstream use in the
Internet. Furthermore, the growing bandwidth and computing
power in the edges of the network foresee innovative massive
applications of peer to peer technology.

The p2p systems and algorithms have evolved during the last
years. From the early central index scheme used in Napster, and
the flooding techniques of Gnutella, to the structured peer-to-
peer key-based routing (KBR) overlays, there has been a huge
leap. More specifically, these last ones (KBRs), are the kind of
p2p networks which have been more active lately in terms of
research. The particularity of KBR networks (also known as
Distributed Hash Tables (DHTs), although this is only one of the
abstractions KBRs usually provide) is that they follow a
structured form (typically a ring or a tree), thus guaranteeing that
any message routed from one node to another will not exceed
the mean of O(log N) hops, where N is the total number of nodes
in the network. This introduced determinism in p2p networks,
since in unstructured networks (which usually use flooding
techniques), it was very difficult to know whether a resource was
available or not (recall that flooding is not a broadcast and as
such, only a few leaves of the network are covered).

As we can see, we can thus classify peer to peer networks as
structured or unstructured, depending on the way they are
connected and how the data they contain is arranged. In a
structured network the connections between nodes are of some
regular structure, which allows deterministic and optimal lookup
hops (typically O (log N)).

In contrast to structured networks, nodes in unstructured
networks do not share a regular structure and a unified identifier
space. Lookups are thus normally achieved by flooding and
using replication in the network.

Structured P2P networks are now a hot research topic and they
represent an interesting platform for the construction of resilient,
large-scale distributed systems. Moreover, structured networks
can be used to construct services such as distributed hash
tables (DHT), scalable group multicast/anycast (CAST) and
decentralized object location and routing (DOLR). We focus our
research in PlanetSim on structured overlays and the design and
development of distributed services on top of them.

PlanetSim Tutorial 2

In general, both structured and unstructured networks are often
called overlay networks because they are built on top of an
existing network, usually on top of the Internet. At the moment,
P2P networks usually do not map the underlying network or
even do not take the layout of these networks into account. As
we can see, these overlay networks are thus working at the
application layer, and use transport protocols like TCP or UDP
as communication channels between interconnected peers.

Current research in peer to peer systems is lacking appropriate
environments for simulation and experimentation of large scale
overlay services. P2P researchers are usually more interested
in algorithm verification (number of hops, node stress, link
stress) than in simulating the whole TCP/IP stack. As a direct
consequence, researchers find existing network simulators too
specific and low-level. Besides, those simulators exhibit a
considerable lack of scalability for thousands of nodes. Another
key problem is that the transition from simulated code to
experimental code is still quite difficult to achieve.

This has led to the development of ad-hoc simulators
(SimPastry, FreePastry, p2psim, DKS, Tapestry) from a high
number of research groups, wasting expensive resources in
infrastructure code and avoiding clean comparisons between
different algorithms. With minor differences, all these ad-hoc
simulators are poorly documented and do not show clear-cut
software engineered designs. Due to these approaches it is
quite difficult to reuse code and even harder to extend those
simulators.

To address these limitations, we present PlanetSim, an object
oriented simulation framework for overlay networks and
services. The novel contributions of PlanetSim are the following:

1. PlanetSim presents a layered and modular architecture

with well defined hotspots documented using classical
design patterns. This can considerably reduce the
learning curve and thus ease the development of new
overlay services and algorithms.

2. PlanetSim clearly distinguishes between the creation and

validation of overlay algorithms (Chord, Pastry) and the
creation and testing of new services (DHT, CAST, DOLR)
on top of existing overlays. Our layered approach cleanly
decouples services built in the application layer using the
standard Common API for structured overlays, and peer
to peer algorithms built in the overlay layer.

PlanetSim Tutorial 3

3. PlanetSim also aims to enable a smooth transition from
simulation code to experimentation code running in the
Internet. Because of this, we are developing wrapper
code that takes care of network communication and
permits us to run the same code in network testbeds such
as PlanetLab. Furthermore, because we follow
FreePastry’s implementation of the Common API, our
overlay services can easily run on top of Rice’s
FreePastry Java code. This enables complete
transparency to services running either against the
simulator or the network.

PlanetSim has been developed in the Java language to reduce
complexity and smooth the learning curve in our framework. We
however have profiled and optimised the code to enable
scalable simulations in reasonable time. To validate the utility of
our approach, we have implemented two overlays (Chord and
Symphony) and a variety of services like CAST, DHT, and
DOLR. We have proved that PlanetSim reproduces the
measures of these environments and is also efficient in its
network implementation.

PlanetSim Tutorial 4

2 Related work

First of all, we distinguish between network simulators and
overlay simulators. The formers provide packet-level simulation
of network protocols (TCP, UDP, IP, etc) over realistic Internet
topologies. However, congestion-aware simulation including
packet-loss and queuing delays is costly, leading to
inappropriate scaling numbers for big overlays.

Overlay simulators are usually more interested in evaluating
overlay algorithms and its routing behaviour without even taking
into account the underlying network layer. The excessive
overhead and complexity of network simulators thus imposes an
unnecessary burden to overlay evaluators and researchers.

For example, the NS network simulator provides a standard
framework for accurate simulation of network protocols. NS is
appropriate to simulate networks in the link, switching and
transport layer but it is not aimed for application level overlays.
Besides, for smaller scale scenarios NS performs gracefully, but
for overlays over several thousands nodes in size suffers
considerable scaling problems.

Another example is the J-Sim network simulation framework that
follows a component oriented approach. Similar to ns-2, J-Sim is
a dual-language simulation environment in which classes are
written in Java (for ns-2, in C++) and "glued" together using
Tcl/Java. Being easier to use than Ns-2, J-Sim also lacks
enough scalability and performance for big overlays.

Other network simulators like SFFNET and OMNET++ have also
been successfully used for peer to peer applications.
Particularly, OMNET++ provides a rich environment that enables
both packet-level simulations and high-level overlay protocols.
Nevertheless, all these network simulators are mainly aimed for
packet-level protocols, and impose additional complexity to the
user learning curve.

In the end, many research groups have created their own
overlay simulators, sacrificing accuracy for scale. Examples of
these include p-sim, FreePasty, SimPastry, 3LS, PLP2P, and
SimP^2.

In the field of structured overlays, one of the pioneers is MIT’s
p2psim. This simulator currently supports many protocols,
including Chord, Koorde, Kelips, Tapestry, and Kademlia.
p2psim is protocol extensible, and it is pretty straightforward to
develop new protocols by simply implementing the join() and

PlanetSim Tutorial 5

lookup() low-level methods. Despite its protocol independence,
p2psim provides no interface in order to simulate higher level
applications. Besides, from the software engineering
perspective, this simulator is poorly documented and difficult to
extend for different purposes.

FreePastry, the Java open-source implementation of the Pastry
structured P2P protocol includes as well, the possibility to
simulate applications on top of this overlay network. As in
PlanetSim, FreePastry provides a Common API to the
applications built on top of it, thus making it very easy for
developers to create and simulate complex distributed
applications. Protocol specific details remain hidden from the
application-level point of view. However, FreePastry is highly
tied to the Pastry protocol, and it does not permit simulation of its
applications on top of other structured P2P protocols.

Another interesting approach is the one followed by MACEDON.
Macedon provides an infrastructure to ease development,
evaluation, and iterative design of overlay algorithms.
Applications are built using a C-like scripting language, and code
is automatically generated for TCP/IP and ns. Moreover, it
follows a standard API which does not tie applications to any
specific overlay network protocol. Large-scale emulation and
evaluation tools are at the developer’s disposal as well.
Macedon is not limited to structured P2P networks, and it
includes an impressive variety of protocols and applications such
as AMMO, Bullet, Chord, NICE, Overcast, Pastry, Scribe, and
SplitStream. Furthermore, MACEDON simplifies development of
new overlays using a finite state machine (FSM) model for
defining overlay protocols.

MACEDON is a very nice tool for overlay simulation but it follows
a completely different approach than PlanetSim. MACEDON is
mainly related to Domain-specific languages (DSLs) that
generate functional code from domain specific representations.
Besides, MACEDON currently supports only two types of
overlays: distributed hash tables and application level multicast.
We have created a layered and modular framework that is
extensible at all levels, and that can even be integrated with
other frameworks. DSLs like MACEDON are not designed to be
extensible but instead to provide all possible functionalities and
vocabularies in the domain language.

PlanetSim Tutorial 6

3 Features

PlanetSim is a P2P overlay Simulator that simplifies
development, testing and probing of distributed algorithms. As
key advantages of our simulator we outline:

• It follows a layered and modular software architecture that
facilitates framework extensions and it reduces the
developer learning curve. PlanetSim has a clean
architecture and it is based on well-known design
patterns.

• It provides a Common API for application developers that

help build distributed services on top of different overlay
algorithms. This can represent a nice educational tool to
explain and test overlay algorithms and services, and thus
avoiding the complexities of implementing systems like
Chord or Symphony.

• For overlay developers, we include a behaviours system

that simplifies the implementation of message
interchange protocols. This behaviours system also
permits an advanced filtering mechanism that intercepts
events related to specific patterns.

• PlanetSim also offers several output formats like Pajek or

GML that can be used for overlay visualization and
analysis. The output system is extensible and users can
also generate their own graph formats.

• PlanetSim is not restricted to structured overlays. We will

soon provide a simple Gnutella implementation on top of
Planetsim.

PlanetSim Tutorial 7

4 Simulator Architecture

The overall model comprises a discrete event simulator (time-
stepped) that uses a central step-clock to simulate timing. As we
will explain in this section, most entities in an overlay simulator
are related to the routing of messages between the nodes of the
overlay. Nevertheless, overlay simulators must not forget the
underlying network that sustains the overlay and thus include
appropriate abstractions and mappings for both routing
infrastructures.

We have decided to implement PlanetSim in Java in order to
smooth the learning curve of the framework. We aim to create a
framework that is easy to learn, easy to use, easy to extend, and
easy to integrate with other frameworks. The main drawback of
this decision is the performance penalty that Java imposes. We
however have carefully profiled and optimised the code to
enable massive simulations in reasonable time.

4.1 Common API for structured overlays
and Freepastry

To better understand the overall architecture we must first
introduce the Common API for Structured Overlays and the
FreePastry implementation. We propose a novel service to be
supported by overlay simulators: a façade API to develop
overlay ser-vices and applications on top of existing overlays.
This API is based on the proposed Common API (CAPI) for
structured Peer-to-Peer overlays published by Dabek et al. The
main motivation for this decision is the plethora of applications
and services that can be built on top of structured overlays.

In the paper, authors identify the Key based Routing (KBR) as
the common denominator of services provided by any structured
overlay. Every node in a structured overlay is thus responsible
for a number of keys in the identifier space (key’s root), and can
route messages in O(log N) hops to the keys root for any key.

On top of this Tier 0 KBR, structured overlays can be used to
construct services like distributed hash tables, scalable group
multicast/anycast and decentralized object location (see Figure
1). These services in turn promise to support novel kinds of
distributed applications like notification systems, messaging,
content distribution networks and cooperative replication of
archival storage. Furthermore, many traditional applications like
Usenet or DNS have recently been rearchitected on top of these
decentralized architectures.

PlanetSim Tutorial 8

Figure 1. Common API Diagram

The common API offers two kinds of functions: the first ones for
routing and processing messages in applications, and the
second ones for accessing node’s routing state information. The
former include three kinds of calls: route, forward and deliver.
The route operation delivers a message to the key’s root.
Applications process messages by executing code in upcalls
(forward, deliver) which are invoked by the underlying routing
system. The forward upcall is invoked at each node that
forwards a message and enables to override the default routing
behaviour. The deliver upcall is invoked on the node that is root
for a key upon the arrival of the message.

The second kind of functions for accessing node’s routing state
includes localLookup, neighbourSet, replicaSet, update, and
range. They give information about routing state and identifier
space information from running nodes.

Using these functions, the authors define the mapping to
different overlay algorithms, and they also specify how to
construct overlay services like DHTs, CAST or DOLR. The
common API (CAPI) promises a unifying layer to different DHT

PlanetSim Tutorial 9

architectures, and thus enabling to run applications on top of
different algorithms (Chord, Pastry, Tapestry). The API is
however loosely defined and each research group is
implementing its own version. This clearly hinders application
interoperability and it only helps to improve understanding of
applications in different DHTs through a common vocabulary.
After evaluating different overlay systems, we concluded that
FreePastry is the cleanest and more advanced implementation
of a structured overlay. They offer a clean object oriented
implementation of the common API in the Java language.
Besides, they have implemented several applications on top of
this API like Scribe overlay multicast, replication systems like
PAST and others. FreePastry is an active project and many
research groups are using FreePastry code to create new
innovative P2P services.

Nevertheless, FreePastry is also poorly documented and it is
only extensible at the application level. It is not possible to
implement and simulate other overlay algorithms apart from
Pastry. Because of this, we have chosen to embrace
FreePastry’s common API implementation in our framework to
leverage their existing code base and developers.

4.2 PlanetSim Layered Design

PlanetSim architecture comprises three main extension layers
constructed one atop another. As we can see in figure 2, overlay
services are built in the application layer using the standard
Common API façade. This façade is built on the routing services
offered by the underlying overlay layer. Besides, the overlay
layer obtains proximity information to other nodes asking
information to the Network layer.

The Network layer dictates the overall life cycle of the framework
by calling the appropriate methods in the overlay’s Node and
obtaining routing information to dispatch messages through the
Network. At this moment, only the simulated Network is
available.

We outline three main extension points (hotspots) in our
framework:

• Application: Developers of overlay services like Scribe
must implement the Application interface to implement the
required messaging protocol. Application methods are
upcalls from the underlying layer and they notify of
specific messages. The Application code can then send
or route messages using the EndPoint (downcalls) as well
as access underlying node routing state. Any application

PlanetSim Tutorial 10

created at this level can then be run or tested against any
structured overlay in the next layer.

• Node: Developers of overlay algorithms like Chord must

implement the Node interface to incorporate the required
overlay protocol. There is an abstract implementation
name NodeImpl that provides incoming and outgoing
message queues that permit to create the KBR
infrastructure required in the upper layer. At this level
nodes interchange messages using Ids and NodeHandles
(IP Address + Id).

• Network: It is also possible to create customized

Networks (CircularNetwork, RandomNetwork) by
selecting specific Id Factories and also to provide
additional routing or proximity costs to the overall routing
infrastructure.

As a direct consequence of this layered approach we can also
identify two main user roles: ones interested in overlay services
and others focused on overlay infrastructures. The former can
thus develop and test different overlay services on top of
different KBR schemes or even probe services without even
care about the KBR layer. Other kind of users can be mainly
interested in structured overlays and thus use the simulator to
probe or compare a variety of KBR algorithms.

For example, in our research group, there are researchers
working at the application layer developing new replicated DHT
services, and also experimenting with query systems on top of
different overlays. Another group is working at the overlay layer
to compare security problems and solutions (BadNodes) over
different overlays.

PlanetSim Tutorial 11

Figure 2. Layered Architecture

4.2.1 Application Layer

At this layer we have followed FreePastry’s implementation of
the Common API. In this line, the interfaces borrowed from
FreePastry are Application, EndPoint, Message, RouteMessage,
Id and NodeHandle. We can see that this API is a façade to the
underlying routing system of the simulator. This layer can thus
permit very easily to test applications like DHT or Scribe
multicast over different implemented overlays like Chord or
Symphony.

We outline the Application and EndPoint classes as the main
implementers of the common API. The EndPoint is a façade to
the underlying overlay Node and offers the route method and
routing state methods like replicaSet or range. The Application is
a hotspot containing the methods deliver, forward and update
that will be invoked by the overlay layer accordingly on reception
of messages. As we can observe, Application provides upcall
messages invoked by the Node and EndPoint provides
downcalls to access Node’s routing state services. Read the
Developer tutorial for more information.

Network Layer Overlay Layer Application Layer

PlanetSim Tutorial 12

4.2.2 Overlay layer

The main conceptual entity and obvious hotspot of this layer is
the Node. A node contains incoming and outgoing message
queues and methods for sending and receiving/processing
messages. Each particular node must then include a complete
behaviour or protocol that will dictate which messages to send in
specific times and how to react to incoming messages.
Furthermore, to create a new overlay, the embedded protocol
must define its own messages with specific information to
arrange the overlay. This also implies that developers should be
able to define their own message types.

At the overlay layer, the communication is bidirectional with both
the application and network layers. With the application layer,
the Node notifies the Application of received messages (upcalls)
and it is invoked by the EndPoint façade in order to route
messages or obtain routing state information (downcalls).

Both the EndPoints and the Nodes exchange RouteMessage
types. A RouteMessage contains source and target identifiers,
as well as information regarding the next hop in the overlay. It is
also possible to modify the next hop route at the application or
overlay layers in order to alter the routing scheme.

With the network layer, the Node hotspot provides the template
methods (join, leave, fail and process) that determine the life’s
cycle of every node. The method process contains the specific
protocol each node maintains to create the overlay. Besides,
every node has an incoming and an outgoing message queue;
incoming messages are parsed every step in the process
method, and the send method moves messages to the outgoing
queue.

To identify nodes in the overlay, the simulator employs three
main entities: Id, IdFactory and NodeHandle. Ids are custom
number types (Chord uses integer numbers of 32 to 160 bits, for
example) that identify nodes in the overall key based routing
scheme. The extensible IdFactory permits to define custom Id
generation schemes in each overlay. Additionally, NodeHandles
contain theoretically IP to Id value pairs for each node.
Furthermore, a NodeHandle provides a proximity method that
queries the Network to obtain network proximity information.

As we can see, we have many upcalls that define the Node’s life
cycle and registering of applications, and only one downcall to
query the Network for proximity between Nodes. Note that
proximity information is still not available in Planetsim 3.0.

PlanetSim Tutorial 13

4.2.3 Network layer

This layer is the main actor who dictates the overall life’s cycle.
The simulator will run n simulation steps or until a specific goal
(i.e. the network is stabilized) is achieved. In each step, the
simulator moves outgoing messages to incoming queues for all
nodes, and then calls the process method in each node to react
to incoming messages.

Furthermore, the simulator can process events in different steps.
Events are nodes joins, leaves or fails. Events can be
generated from an event file declaratively, or programmatically
using simulator APIs.

The key hotspot is the Network: it represents the underlying
network that the Simulator uses to route messages. The
Network contains a mapping of NodeHandles to Nodes that
permit to correctly dispatch messages from source to
destination.

An overlay can run on top of different networks using different
underlying protocols. Developers can define their own networks,
with specific protocols. The network can also include latency or
cost information, or even the topology and arrangement of real
nodes in this network. We could then implement a GT-ITM
(Georgia Tech Inter-network Topology Models) transit stub
topology in a network that would add more real information
about costs and latencies.

Furthermore, each node can try to calculate its network proximity
to other node. This can be defined in a NodeHandle’s proximity
method, transparently invoking the Network’s proximity method
(following FreePastry’s interface definition). Developers can
then decide in the network which proximity metric to employ
(ping, land-marks, etc).

Nevertheless, a simple overlay mostly focused on algorithm
verification, probably will be more interested in a very simple
Network -without proximity information worsening the simulator
performance-. In the current version of PlanetSim, we only
provide simple Networks like RandomNetwork or
CircularNetwork that do not include latency costs. It is however
feasible to incorporate Peersim or Brite network information to
define more realistic networks.

An ideal case at this point could be the integration of disparate
frameworks: overlay frameworks with network simulation
frameworks. The Network hotspot and Network factory extension

PlanetSim Tutorial 14

point would theoretically permit to create such integration points.
This is to say for example between J-sim and PlanetSim.
Nevertheless, a more thorough study must be undertaken to
study the feasibility of such integration. A C++ implementation
of PlanetSim could also study the interoperability with NS for
example.

Another interesting feature of the simulator is to serialize to a file
the full state of a simulation. This can be used for example, to
stabilize a huge overlay network, serialize it, and later on begin
the simulation from that point. This feature is extremely useful
for large simulations and saves valuable computing time.

Finally, the Network can be replaced by a Network Wrapper.
This wrapper then assumes the tasks of the Simulator, and it
routes incoming and outgoing Node’s messages using
appropriate TCP or UDP connections on top of a real IP
network. It is also responsible for calculating the proximity
metric between nodes and to optimize the communication
channels, disconnection events and specific timeouts of the
underlying IP network. The NetworkWrapper thus allows moving
unchanged simulated code to a real Internet testbed like
PlanetLab. However, note that NetworkWrapper provides
different methods than Network, it does replace completely the
simulator in the interaction with nodes. NetworkWrapper does
not include the simulate method nor inherits or implements any
Network class. Also note than we are still working in the
NetworkWrapper and much work remains to be done at this
point.

4.3 PlanetSim kernel

This is a graphical representation of the PlanetSim kernel:

Factories

Route
Message

Pool

Configuration Attributes
(planet.util.Properties)

Behaviours

Results

Unified View of Kernel Abilities
(planet.generic.commonapi.factory.GenericFactory)

PlanetSim Tutorial 15

Figure 3. Simulator kernel

They have the following goals:

• Configuration Attributes: Its objective is to load the
current specified configuration into the simulator context.
The representative class is planet.util.Properties.

• Factories: It is a collection of classes that offer the ability

of build generically instances of some type, including all
items defined into the PlanetSim layers, as for example
Ids, Nodes or NodeHandles. All these related methods
follow the Factory Method design pattern.

• RouteMessagePool: In a whole network communication

are required a lot of RouteMessages to make it stabilized.
So, we have designed a pool to reuse them as possible.
Nevertheless, on some critical point on the simulation will
have a maximum of RouteMessage in use, where will be
built the maximum number of RouteMessages. On the
rest of the simulation all these messages will be reused.

• Behaviours: It defines a different operation schema for

incoming RouteMessages process on the overlay
implementation. The current distribution includes the
Symphony overlay that uses this schema.

• Results: We have designed an alternative to make

outputs using different formats, focused to show the
graph formed with whole network. Currently are
distributed the GML and Pajek results types.

• Unified View of Kernel Abilities: Because of the great

number of instances to use simultaneously to accomplish
a network simulation, we have designed a public layer
with all required functionality to the developers. This view
is based on the
planet.generic.commonapi.factory.GenericFactory class,
and occults all required instances and other little details.

4.3.1 Configuration Attributes

PlanetSim uses this schema to load the current configuration
attributes:

PlanetSim Tutorial 16

Figure 4. Loading Process of the Configuration

It uses two configuration files. The first MCF shows the SCF to
use for each test. This file is only a bridge between a test and its
configuration file. This schema has the advantage of to change
the overlay to use in the current simulation, for example, without
any source code modification and recompilation.

The SCF contains all detailed attributes for the PlanetSim kernel
and other ones, related to the current test or the overlay in use.

4.3.2 Factories

Factories are a collection of interfaces and their implementation
that permits instances building, using their methods that follow
the Factory Method design pattern.

As for example, the IdFactory defines different methods for
building new node Ids with certain values (primitives or objects).
All these methods returns Id instances but don’t any specific
implementation (as ChordId or SymphonyId). With this ability,
PlanetSim can build networks with different overlays and
different implementations.

There is a Factory definition for each element that appears in the
PlanetSim layers, as you can see in the
planet.commonapi.factory package. They are the following:

• NetworkFactory
• NodeFactory
• NodeHandleFactory
• IdFactory
• EndPointFactory
• ApplicationFactory

Their names just define the instance type returned. But, to make
it possible just need the configuration attributes explained above.

planet.
util.

Properties

Master
Configuration

File
(MCF)

Specific
Configuration

File
(SCF)

PlanetSim Tutorial 17

4.3.3 RouteMessagePool

It is a Factory and a Pool, all in one. This functionality is required
because of the intensive use of RouteMessages on any
simulation. If no pooling was made, the overhead for the
Garbage Collector was increased visibly.

For the correct operation of this RouteMessagePool, the
developer must ensure that all unused RouteMessages are free
into the pool, and always the RouteMessages are getting from it.

4.3.4 Behaviours

In order to provide a greatest degree of reusability, PlanetSim
provides a mechanism to organize the actions taken at node
level. This mechanism is based on the notion of behaviour.
Strictly speaking, behaviour is a class that let nodes perform an
action in response of an incoming message. For the developer’s
viewpoint, behaviour is a piece of code that encapsulates an
action that must be performed by the node when a suitable
message arrives. By a suitable message we mean a message
whose performative, that is, the type and the mode of the
message matches the behaviour descriptor. The behaviour
descriptor is an expression used to specify when a behaviour
must be executed. In its most primary form, a behaviour
descriptor can be a pair of literals corresponding to the type and
a mode of a message. Nonetheless, behaviour descriptors can
be more complex and accept several wildcards as we will see
later in this chapter.

The core idea behind the use of behaviours is let the PlanetSim
programmer hand-code different actions and use them as
interchangeable pieces like a Lego artefact. For example, by
binding a particular behaviour with a message, and later,
swapping it by a new one without modifying the node’s source
code all the time. This let, via a configuration file, add and
remove behaviours, that is, what a node must do without
recompiling it again. Briefly, this configuration file has a new line
for every behaviour entry. Every behaviour entry specifies the
java class that encapsulates the behaviour and its descriptor that
specifies when the behaviour must be executed.

4.3.4.1 Runtime Execution

Until now, we have introduced the notion of behaviour and its
advantages but we don’t have explained what happens at

PlanetSim Tutorial 18

runtime when the simulator uses behaviours to model the p2p
nodes involved in it.

Basically, a singleton object called behaviour’s pool is loaded
into the simulator. The behaviour’s pool has the instances of the
behaviours (an instance of each one for the whole simulator)
and acts as a proxy executing the corresponding ones on the
nodes that have new messages. In fact, the implementation of
the behaviour’s pool is not fixed and a programmer can
customize a new one for its own interests. For that purpose, the
simulator includes several interfaces (BehavioursFactory,
BehavioursPool,…) to let developers customize the runtime
behaviour classes. Nevertheless, the way to do it is out of the
scope of this tutorial.

Upon the behaviour’s pool falls the core task of the behaviour’s
infrastructure, we will explain on follows a little example to see
the whole process. By now, we consider that a structured p2p
overlay like Chord wants to replicate the contents stored under a
key when a REPLICATE message arrives. Until now, PlanetSim
users would probably make an implementation of such operation
by modifying the dispatcher method inside the node. However,
with this new approach in mind, a programmer would probably
implement this new task in a new behaviour, called for instance,
ReplicateBehaviour. Furthermore, we imagine that the latter one
is what the programmer decided to do. In that case, once the
programmer had finished the implementation of the
ReplicateBehaviour, we would edit the configuration file and
would include a new behaviour entry specifying that when a
REPLICATE message arrives the ReplicateBehaviour must be
executed. Thereafter, the programmer would run a new
simulation.

The simulation proceeds as follows. At the start up, the simulator
instantiates the behaviour’s pool and loads the behaviours
included in the configuration file. Then, the behaviour’s pool is
ready to begin invoking behaviours. This is occurs by
intercepting the incoming messages and checking them against
the behaviour descriptors. An interesting feature of the current
behaviour’s pool implementation is that a single message can
match more than one behaviour descriptor. For that reason, the
behaviour’s pool keeps a stack of behaviours for every possible
message at node level. These stacks have the behaviour
instances ordered from more specific to more generic. In fact, if
the protocol tends to perform common tasks for every new
message arrival multiple behaviour invocations will incur
frequently.

The behaviour’s pool invokes a behaviour by passing a couple of
arguments. These are the original RouteMessage and the

PlanetSim Tutorial 19

reference to the node to who the RouteMessage was addressed.
This reference allows updating the node’s internal state to reflect
the last network transaction. Once the behaviour execution
finishes, the behaviour’s pool returns the control to the node or
either spawns a new behaviour depending on whether the stack
of behaviours is over or not.

In the context of our example, when the behaviour’s pool
intercepts a REPLICATE message will dispatch the
ReplicateBehaviour and finally, it will yield the control to the
node.

4.3.5 Results

Into PlanetSim has been added new functionality to get outputs
focused to represent the network topology as a graph. Examples
are GML and Pajek formats.

This task involves to the Node implementation to get its
connectivity as edges into a graph and a ResultsGenerator that
writes the output into an external file, with the required format for
that results type.

Different results type can coexist and use them into the same
simulation to extract the graph information with different formats.
Also, this operation schema is extensible and can add new
formats implementing only new ResultsGenerator in the most of
cases.

These are two examples of graph representation with different
output formats:

PlanetSim Tutorial 20

Figure 5. A Chord network with 1000 nodes, which their

Ids are randomly built

PlanetSim Tutorial 21

Figure 6. A Symphony network with 1000 nodes, which

their Ids are randomly built

PlanetSim Tutorial 22

5 Developer Tutorial

With the following lines you will be able to follow how work as a
developer within PlanetSim.

5.1 Main application: Basic structure

You need to understand the basic design of the main application
and the configuration files used to run a complete simulation
test. See the following figure:

Figure 7. Basic structure for a main application

MAC is the class that contains the main() method and executes
the required test. MCF is a bridge between each main
application and the desired configuration file. This contains a list
of (key, value) pairs, where the key is the unique name of the
test and the value is the path to SCF. The SCF contains all
required attributes that define all values (classes, numbers,
names,…) to use within the current test.

5.1.1 Building the Main Application Class

There are two ways to mount a main application and both using
the planet.generic.commonapi.GenericApp class:

• Building a class that extends of GenericApp.
• Building a class and using the static methods of

GenericApp.

This is an example of the first way, extending of GenericApp:

Main
Application

Class
(MAC)

Master
Configuration

File
(MCF)

Specific
Configuration

File
(SCF)

PlanetSim Tutorial 23

package planet.test;

import planet.generic.commonapi.GenericApp;

public class Test extends GenericApp {

 public Test() throws Exception {
 super("../conf/master.properties", "TEST",
 false, false, false, false);

 //here your own code
 }

 public static void main(String[] args) throws Exception {
 new Test();
 }
}

Figure 8. Main application extending of GenericApp

This is an example of the second way, using the GenericApp
class directly:

package planet.test;

import planet.generic.commonapi.GenericApp;

public class Test2 {

 public static void main(String[] args) throws Exception {
 GenericApp.start("../conf/master.properties", "TEST2",
 false, false, false, false);

 //here your own code
 }
}

Figure 9. Main application using GenericApp

The default constructor or the GenericApp.start() method
needs the following parameters:

1. The path to the MCF.
2. A unique name that identifies the current test. This will

appear into the MCF as a key.
3. Flag to activate Application level properties.
4. Flag to activate events properties.
5. Flag to activate results properties.
6. Flag to activate serialization abilities.

The values of these last four parameters are test dependant,
and identify when to load optional parts of the current
configuration.

Following this description, into the MCF
PLANETSIM/conf/master.properties will appear lines as
follows:

PlanetSim Tutorial 24

TEST = ../conf/chord.properties
TEST2 = ../conf/chord.properties

Figure 10. Example of lines into MCF

These lines are only an example. They show the configuration
file with all current attributes values to use within both tests. The
user of these tests must ensure that the attributes appeared
within the SCF contains the required configuration values to
execute it correctly. The file specification may be as an absolute
or relative path.

5.1.2 Specifying new configuration within MCF

There are situations where loaded default properties from the
configuration file must be overwritten. On these cases you have
to reconfigure the simulator context. The way is as follows:

package planet.test;

import planet.generic.commonapi.GenericApp;
import planet.generic.commonapi.factory.Topology;
import planet.util.Properties;

public class Test {

 public static void main(String[] args) throws Exception {
 GenericApp.start("../conf/master.properties","TEST",
 false,false,false,false);

 //example of overwritten attributes
 Properties.factoriesNetworkSize = 100;
 Properties.factoriesNetworkTopology = Topology.RANDOM;

 //reconfiguration of the simulator
 GenericApp.restart(false,false,false,false);

 //here your own code
 }
}

Figure 11. Reconfiguration of the simulator context

GenericApp.restart() method reloads all simulator context
attributes to apply new values explicitly set. The four parameters
are the same as the last four in the GenericApp.start() method
or default constructor seen above.

After these lines of initialization of the simulator context appears
the desired test properly.

PlanetSim Tutorial 25

5.2 Layer 2: The Application Layer

To build an Application within the simulator you have to do the
following:

1. Build a new class that implements the
planet.commonapi.Application interface.

2. Into this new Application you have to implement its
functionality, as a DHT for example.

3. Build a new class that implements the
planet.commonapi.Message interface, which will
contain any required data to send between Applications in
their normal operation.

5.2.1 Application example

The following figure is an example of an Application
implementation:

package planet.test.helloworld;
import planet.commonapi.*;
import planet.commonapi.exception.InitializationException;
import planet.generic.commonapi.factory.GenericFactory;
import java.util.*;

public class DHTApplication implements Application {
 private EndPoint endPoint = null;
 /**
 * Identification of the application.
 */
 public static String applicationId = "DHTApplication";
 /**
 * Identification of the application instance.
 */
 private String appId = applicationId;

 /**
 * Constructor
 */
 public DHTApplication() {
 }

 public void byStep(){}

 public void setEndPoint(EndPoint ep) {
 endPoint = ep;
 }

 public boolean forward(Message message) {
 System.out.println("[" + appId + "] over [" +
 endPoint.getId()+ "]: Forwarding message...");
 return true;
 }

PlanetSim Tutorial 26

 public void deliver(Id id, Message message) {
 if (message instanceof DHTPeerTestMessage) {
 DHTPeerTestMessage mesg =
 (DHTPeerTestMessage) message;
 System.out.println("Delivered Message: "
 + ((DHTPeerTestMessage)
 message).getData());
 System.out.println("Destination Node : " +
 this.endPoint.getId());
 System.out.println("Message Id : " + id);
 }
 }

 public String getId() {
 return appId;
 }

 public void setId(String appId) {
 this.appId = appId;
 }

 public void update(NodeHandle node, boolean joined) {
 }

 public Application setValues(String applicationName)
 {
 this.appId = applicationName;
 return this;
 }

 //application dependant methods
 public Message makeTestMessage(String data) {
 return new DHTPeerTestMessage(data);
 }

 public void send(String textKey, DHTPeerTestMessage mess) {
 try {
 endPoint.route(GenericFactory.buildKey(textKey),
 mess, null);
 } catch (InitializationException e) {
 System.out.println(
 "Cannot to be sent the message [" + mess
 + "] with this key [" + textKey + "]");
 e.printStackTrace();
 }
 }
}

Figure 12. HelloWorld Application example

There are the followings requirements within the implementation
(marked as bold above):

1. Contain an EndPoint reference. The method
setEndPoint() is invoked automatically when an
Application instance is registered to a Node.

2. Contain a String attribute to save the Application name.
One Node can contain very Applications at the same
time, and this name is used to identify them. With the

PlanetSim Tutorial 27

default constructor this name has to be initialized (or in its
declaration).

3. The setValues() method only will be invoked by the own
simulator if the Application name has to be replaced.

4. The forward() method always have to return true, by
default. This method is invoked when an Application level
Message is routed into the underlying overlay, on each
Node, including the destination Node.

5. The deliver() method is invoked when the Message has
arrived to the destination Node. Its implementation has to
process the incoming Message, making the required
actions.

Other methods:
6. The byStep() method is invoked always by the underlying

Node, when it just has finished its internal operations.
7. The update() method informs to this Application when a

Node has joined (when true) or leaved (when false) to the
network.

Other available functionality can be found by the EndPoint
attribute, which offers routing and current connectivity
information basically.

5.2.2 Message example

Following the same test used above (that appears into the
current distribution), this is the Message implementation class
for the HelloWorld test:

package planet.test.helloworld;
import planet.commonapi.*;

public class DHTPeerTestMessage implements Message {
 /**
 * Contents of this message.
 */
 private String data = null;

 public DHTPeerTestMessage(String data) {
 this.data = data;
 }

 public String getData() {
 return data;
 }
}

Figure 13. Message implementation example

PlanetSim Tutorial 28

The Message interface contains no method. For this reason, all
the methods and constructors that appear in this example is
Application dependant.

5.2.3 Configuration attributes to modify

Once the Application and Message has been correctly
implemented, there is another step to use these classes into a
test.

You have to open the SCF for the current test and modify the
entry FACTORIES_APPLICATION writing the fully qualified class
name of your Application implementation. No Message entry is
required because its management is made internally into the
own Application implementation.

5.3 Layer 1: The Overlay Layer

How can I add a new overlay into this simulator? How can I fix
its internal operation and routing management? Well, you should
follow these steps:

1. Build a new class that implements the
planet.commonapi.Node interface. Because there are
some common aspects between overlays, we have
released the planet.generic.commonapi.NodeImpl
abstract class to extend by any new overlay
implementation. However, if its functionality is different to
the required, you can implement directly the Node
interface.

2. Decide if its implementation is behaviours or
programmationally based.

3. If your implementation is behaviours based, you have to
build some behaviours to implement the internal overlay
management (successors maintenance, topology
maintenance, connectivity management, …),
implementing the planet.commonapi.behaviours.
Behaviour.

4. If your implementation is programmationally based, you
have to include whole overlay management into the Node
implementation.

5. Because of communication between Nodes is made with
RouteMessages, you should to specify different types and
modes for these communications.

6. Build a new class that extends of planet.commonapi.Id,
an abstract class that defines the unique identification for
any Node into the simulator.

PlanetSim Tutorial 29

7. Any important attribute of your overlay, common for all
nodes, should be parametrical from the external SCF (see
the Chord, Symphony or Trivial P2P parts in SCFs on the
PLANETSIM/conf/ directory to take examples). These
attributes have to be included into specific implementation
of the planet.util.OverlayProperties for the current
overlay.

5.3.1 Node example (Trivial P2P overlay)

To show a basic example of overlay, we have built the Trivial
P2P. This is a ring based topology network, with only a
successor and predecessor as links per Node. Its
implementation offers the ability to work with or without
behaviours.

See the TrivialNode implementation:

package planet.trivialp2p;

import java.util.Collection;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.Set;
import java.util.Vector;

import planet.commonapi.Id;
import planet.commonapi.Message;
import planet.commonapi.NodeHandle;
import planet.commonapi.RouteMessage;
import planet.commonapi.behaviours.BehavioursPool;
import planet.commonapi.exception.InitializationException;
import planet.commonapi.results.ResultsConstraint;
import planet.commonapi.results.ResultsEdge;
import planet.generic.commonapi.NodeImpl;
import planet.generic.commonapi.factory.GenericFactory;
import planet.simulate.Results;
import planet.util.Properties;

public class TrivialNode extends NodeImpl {

 /* ************* CONSTANTS FOR MODE OF ROUTEMESSAGE *******/
 public final static int REQUEST = 0;
 public final static int REFRESH = 1;

 /* END ****** CONSTANTS FOR MODE OF ROUTEMESSAGE *******/

 /* ********** CONSTANTS FOR TYPE OF ROUTEMESSAGE *******/
 public final static int DATA = 0;
 /* END ****** CONSTANTS FOR TYPE OF ROUTEMESSAGE *******/

 /* ********** CONSTANTS FOR TYPE/MODE OF ROUTEMESSAGE *******/
 public final static String[] TYPES = { "DATA" };
 public final static String[] MODES = { "REQUEST", "REFRESH" };

PlanetSim Tutorial 30

 /* END ****** CONSTANTS FOR TYPE/MODE OF ROUTEMESSAGE *******/

 // Routing table:
 /** The successor of the actual node. */
 private NodeHandle successor;
 /** The predecessor of the actual node. */
 private NodeHandle predecessor;
 /** Contains ALL links of the actual node. */
 private Set links;
 /** Contains the unique node successor. */
 private Vector successors;
 /** If true, the node is already alive. */
 private boolean alive;
 /** The behaviours pool to be used. */
 private BehavioursPool behPool;

 /* ******* STARTING IMPLEMENTATION **************************/

 /**
 * Initialize the internal structure.
 */
 public TrivialNode() throws InitializationException {
 super();
 alive = true;
 successor = null;
 predecessor = null;
 links = new HashSet(2);
 successors = new Vector(1);
 if (Properties.overlayWithBehaviours)
 behPool = GenericFactory.getDefaultBehavioursPool();
 }

 /**
 * Nothing does. This implementation don't contain a
 * stabilization protocol.
 * @param bootstrap Bootstrap node.
 * @see planet.commonapi.Node#join(planet.commonapi.NodeHandle)
 */
 public void join(NodeHandle bootstrap) {
 }

 /**
 * Nothing does. Only sets the alive flag to false.
 * @see planet.commonapi.Node#leave()
 */
 public void leave() {
 alive = false;
 }

 /**
 * Gets the internal routing information in a hashtable.
 * The key informs the concept of the related value.
 * @return A hashtable with the internal routing information.
 * @see planet.generic.commonapi.NodeImpl#getInfo()
 */
 public Hashtable getInfo() {
 Hashtable info = new Hashtable();
 info.put("successor",successor);
 info.put("predecessor",predecessor);

PlanetSim Tutorial 31

 return info;
 }

 /**
 * Returns the own nodehandle or its successor nodehandle, in a
 * clockwise proximity.
 * @param id The id to be find.
 * @return The nearest nodehandle in a clockwise manner.
 * @see
planet.commonapi.Node#getClosestNodeHandle(planet.commonapi.Id)
 */
 public NodeHandle getClosestNodeHandle(Id id) {
 return (predecessor.getId().
 betweenE(predecessor.getId(),this.id)) ?
 this.nodeHandle :
 successor;
 }

 /**
 * Routes an application level message to the destination node.
 * @param appId Application name.
 * @param to Destination node (or key).
 * @param nextHop May be null. The next hop into the route.
 * @param msg Application level message to be sent.
 * @see planet.commonapi.Node#routeData(java.lang.String,
planet.commonapi.NodeHandle, planet.commonapi.NodeHandle,
planet.commonapi.Message)
 */
 public void routeData(String appId, NodeHandle to, NodeHandle
nextHop, Message msg) {
 RouteMessage data =
 buildMessage(GenericFactory.generateKey(),
 nodeHandle,to,nextHop,DATA,REQUEST,appId,msg);
 if (data!=null)
 {
 Results.incTraffic();
 this.dispatchDataMessage(data,REQUEST,REFRESH);
 }
 }

 /**
 * Do nothing. Only sets to false the alive flag.
 * @see planet.commonapi.Node#fail()
 */
 public void fail() {
 alive = false;
 }

 /**
 * Prints out the routing information of this node.
 * @see planet.commonapi.Node#printNode()
 */
 public void printNode() {
 System.out.println("<Node id=\""+id+"\">");
 System.out.println(" <Successor
id=\""+successor.getId()+"\">");
 System.out.println(" <Predecessor
id=\""+predecessor.getId()+"\">");
 System.out.println("</Node>");
 }

PlanetSim Tutorial 32

 /**
 * Prints out the local node information.
 * @see planet.commonapi.Node#prettyPrintNode()
 */
 public void prettyPrintNode() {
 System.out.println("<Node id=\""+id+"\"/>");
 }

 public void broadcast(String appId, NodeHandle to, NodeHandle
 nextHop, Message msg) {
 throw new NoSuchMethodError("Method not implemented yet.");
 }

 public NodeHandle getPred() {
 return predecessor;
 }

 public NodeHandle getSucc() {
 return successor;
 }

 public boolean isAlive() {
 return alive;
 }

 public Vector getSuccList(int max) {
 //NOTE: only exists one successor
 return successors;
 }

 public Vector localLookup(Id key, int max, boolean safe) {
 return null;
 }

 public Vector neighborSet(int max) {
 return null;
 }

 public Vector replicaSet(Id key, int maxRank) {
 return null;
 }

 public boolean range(NodeHandle node, Id rank, Id leftKey, Id
rightKey) {
 return false;
 }

 /**
 * Build the edges for its sucessor and predecessor links.
 * @param resultName Result name to be used.
 * @param edgeCollection Edge collection where to add all the new
ones.
 * @param constraint Constraint to verify the addition of the
edges.
 * @see planet.commonapi.Node#buildEdges(java.lang.String,
java.util.Collection, planet.commonapi.results.ResultsConstraint)
 */
 public void buildEdges(String resultName, Collection
edgeCollection, ResultsConstraint constraint) {
 if (edgeCollection == null || constraint == null) return;

PlanetSim Tutorial 33

 //neighbours (successors and predecessors)
 ResultsEdge e =
buildNewEdge(resultName,id,successor.getId(),"#0000FF");
 if (e!=null)
 if (constraint.isACompliantEdge(e))
edgeCollection.add(e);
 e =
buildNewEdge(resultName,id,predecessor.getId(),"#0000FF");
 if (e!=null)
 if (constraint.isACompliantEdge(e))
edgeCollection.add(e);
 }

 public Set getAllLinks() {
 return this.links;
 }

 /**
 * Process the local incoming messages.
 * @param actualStep Actual step in the simulation process.
 * @return Always false, whenever the node always is stabilized
 * and don't require more steps for its stabilization.
 * @see planet.commonapi.Node#process(int)
 */
 public boolean process(int actualStep) {
 //always must be invoked at the beginning
 super.process(actualStep);

 //here starts your node process
 if (Properties.overlayWithBehaviours)
 {
 //you may use this structure when your implemented
 //overlay use behaviours
 dispatchMessagesWithBehaviours();
 } else {
 //you may use this structure when your implemented
 //overlay don't use behaviours
 dispatchMessages();
 }

 //always must be invoked at the end
 invokeByStepToAllApplications();
 return false;
 }

 public Node setValues(Id newId) throws InitializationException {
 super.setValues(newId);
 //this overlay doesn't require any other action.
 return this;
 }

 /* ******** SPECIFIC OVERLAY METHODS *************************/

 /**
 * Updates the node predecessor.
 * @param pred The new node predecessor.
 */
 public void setPredecessor(NodeHandle pred)
 {
 if (predecessor!=null)
 links.remove(predecessor);

PlanetSim Tutorial 34

 predecessor = pred;
 links.add(pred);
 }

 /**
 * Updates the node successor.
 * @param succ The new node successor.
 */
 public void setSuccessor(NodeHandle succ)
 {
 if (successor!=null)
 {
 links.remove(successor);
 successors.remove(0);
 }
 successor = succ;
 links.add(succ);
 successors.add(succ);
 }

 /**
 * Dispatch all incoming messages of applicaion level.
 */
 private void dispatchMessages()
 {
 while (hasMoreMessages())
 {
 RouteMessage msg = nextMessage();
 //Only application level messages are delivered
 dispatchDataMessage(msg,REQUEST,REFRESH);
 }
 }

 /**
 * Dispatch all incoming messages of application level using
 * behaviours.
 *
 */
 private void dispatchMessagesWithBehaviours()
 {
 while (hasMoreMessages()) {
 RouteMessage msg = nextMessage();
 try {
 behPool.onMessage(msg, this);
 GenericFactory.freeMessage(msg);
 } catch
(planet.commonapi.behaviours.exception.NoSuchBehaviourException e) {
 throw new
 Error("An applicable behaviour is not found");
 } catch
(planet.commonapi.behaviours.exception.NoBehaviourDispatchedException
d) {
 throw new
 Error("An applicable behaviour is not found");
 }
 }
 }

 /* END **** SPECIFIC OVERLAY METHODS *************************/

 public String toString()

PlanetSim Tutorial 35

 {
 return "<TrivialNode id=\""+id+"\">";
 }
}

Figure 14. Node implementation for the Trivial P2P
overlay

There are important points in this basic implementation:

1. All the types and modes for the communications on
current overlay appear as a final static attributes into the
specific Node implementation. In this case only for the
Application level communication.

2. Because of this TrivialNode extends of NodeImpl,
appears the super() statement in the default constructor.

3. Into the setValues() method only invokes the default
implementation of the NodeImpl. But if it requires, your
own initialization should put into this method.

4. The initialization of any Node is made by this sequence of
actions: 1) invoking the default constructor, and 2)
invoking the setValues() method.

5. The process() method shows exactly the header and
footer of this method, and also shows the possible ways
to implements the incoming RouteMessages treatment.

6. The dispatchMessages() method shows the way to
implement procedurally the RouteMessages dispatching.

7. The dispatchMessagesWithBehaviours() method
shows the way to implement the RouteMessages
dispatching using behaviours.

This implementation of RouteMessages dispatching would not
confuse you. In this case there are only RouteMessages for the
Application level Messages, because this overlay is directly
stabilized (see the planet.test.trivialp2ptest for more details).
But it is applicable to any other (and more common) situation.

For the Id into the Trivial P2P overlay is used the existing
SymphonyId (a double value based Id). You can do this. Reuse
any other good implementation to accelerate your job.

The OverlayProperties for this Trivial P2P is as follows:

package planet.trivialp2p;

import planet.commonapi.exception.InitializationException;
import planet.util.OverlayProperties;
import planet.util.PropertiesWrapper;

public class TrivialProperties implements OverlayProperties {

 /* *********** TRIVIALP2P PROPERTIES ***********************/
 /* Theese must to appear on the properties file */

PlanetSim Tutorial 36

 /**
 * TrivialP2P property: Default key for 'debug' flag.
 */
 public static final String TRIVIAL_DEBUG = "TRIVIAL_DEBUG";
 /* ********* TRIVIALP2P ATTRIBUTES **********************/
 /**
 * When true, shows information for debug purposes.
 */
 public boolean debug;

 public void init(PropertiesWrapper properties) throws
InitializationException {
 //Load properties
 debug = properties.getPropertyAsBoolean(TRIVIAL_DEBUG);
 }

 public void postinit(PropertiesWrapper properties) throws
InitializationException
 {
 //does nothing
 }

 /**
 * Returns a String representation of the constant specific
 * values of type the RouteMessage. Its use is only for human
 * readable logs. Based on SymphonyNode implementation.
 * @param type Value to get its String representation.
 * @return The String representation of the type.
 */
 public String typeToString(int type) {
 return TrivialNode.TYPES[type];
 }

 /**
 * Returns a string representation of each of event mode and
 * RouteMessage mode.
 * @param mode Mode of the RouteMessage to get its
 * String representation.
 * @return String representation of the mode of RouteMessage.
 */
 public String modeToString(int mode) {
 return TrivialNode.MODES[mode];
 }

 /**
 * Returns RouteMessage type for Application level.
 * @return RouteMessage type for Application level.
 */
 public int getTypeForApplicationMessage()
 {
 return TrivialNode.DATA;
 }
}

Figure 15. OverlayProperties implementation for
Trivial P2P Overlay

Its initialization is made in two steps. First is invoked the init()
method and loads all available properties without using (if it is
required) the GenericFactory.buildXXX() methods. At the

PlanetSim Tutorial 37

second step the postinit() method is invoked, when the
GenericFactory is correctly initialized and available all its
methods.

The typeToString() offers the ability to show a String
representation of any existing RouteMessage type. The
modeToString() does the same, but for the RouteMessage
modes.

The getTypeForApplicationMessage() returns the type for the
Application level communications.

PlanetSim Tutorial 38

6 Getting Results

PlanetSim offers the ability for getting results. There are two
ways:

1. Showing the Node information for whole network. It is
based on Node.prettyPrintNode() and
Node.printNode() methods. Its style is free and as text.

2. Showing the current state of the network, with the nodes
connectivity. In the current distribution we include the
GML and Pajek outputs. Its style follows the required
formats to load graphs into the related viewers.

For the first way, we have included an automatic management of
this output. In the SCF related to the current test, an entry exists
with the name SIMULATOR_PRINT_LEVEL. This has three values: 0
for no output, 1 for Node.prettyPrintNode() invocation and 2 for
full printing with the Node.printNode() invocation. To get this
output type at any moment, always to the default output
(System.out), you should put this line into your code:

GenericApp.printNetwork(net);

where the net parameter is the current Network instance.

The way to get a GML or Pajek output is “quite more complex”.
See the following example:

GenericFactory.generateResults(ResultsNames.GML,network,
 "network.gml", GenericFactory.buildConstraint(
 ResultsNames.GML), true);

This statement produces the GML output into the network.gml
file. This is the parameter description:

1. Result type name.
2. The current Network instance.
3. Filename where to write the output.
4. The desired ResultsConstraint to use to select the nodes

and edges to show in the current results.
5. Boolean flag that forces the whole network output if true,

or not if false.

6.1 Developer Guide

You can extend this simulator adding new output formats. There
are different steps for building new outputs, depending on your

PlanetSim Tutorial 39

requirements. At the following lines you can see all possible
steps:

1. Builds a new class that implements the
planet.commonapi.results.ResultsFactory interface.
By default, there is the
planet.generic.commonapi.results.ResultsFactoryImp
l implementation, with no constraints to use within any
output format type. In the most of cases, this class is just
the necessary one.

2. Builds a new class that implements the
planet.commonapi.results.ResultsEdge interface. By
default, the
planet.generic.commonapi.results.ResultsEdgeImpl is
just the necessary for the most of cases.

3. Builds a new class that implements the
planet.commonapi.results.ResultsConstraint interface.
By default is used the
planet.generic.commonapi.results.ResultsIdleConstra
int that includes all Nodes and edges into the generated
output.

4. Builds a new class that implements the
planet.commonapi.results.ResultsGenerator interface.
This class is always mandatory implementation. This
includes the schema of the output format really. See
planet.generic.commonapi.results.{ResultsGMLGener
ator | ResultsPajekGenerator} to take examples.

5. Builds a new class that implements the
planet.util.PropertiesInitializer interface. This should
contain all specific attributes for the new output format
(colours, font type, font size, …).

Once these classes are implemented (or reused the existing
ones), you need to specify them into the SCF to make it
available from your desired test. You have to append the fully
qualified class names into specific entries, using the comma
separated format. Each position in the list of values for these
entries is related to the same results type.

See an example from a SCF currently distributed with the
simulator:

RESULTS PART

IMPORTANT: All different results attributes must appear in comma
separated format, using each position for the same results type for
all attributes.

PlanetSim Tutorial 40

########## OPTIONAL ATTRIBUTES: Test dependant

The default ResultsFactory class
RESULTS_FACTORY =
 planet.generic.commonapi.results.ResultsFactoryImpl, \
 planet.generic.commonapi.results.ResultsFactoryImpl

The default ResultsEdge class
RESULTS_EDGE =
 planet.generic.commonapi.results.ResultsEdgeImpl, \
 planet.generic.commonapi.results.ResultsEdgeImpl

The default ResultsConstraint class
RESULTS_CONSTRAINT =
 planet.generic.commonapi.results.ResultsIdleConstraint, \
 planet.generic.commonapi.results.ResultsIdleConstraint

The default ResultsGenerator class
RESULTS_GENERATOR =
 planet.generic.commonapi.results.ResultsGMLGenerator, \
 planet.generic.commonapi.results.ResultsPajekGenerator

The default PropertiesInitializer for results properties
RESULTS_PROPERTIES =
 planet.generic.commonapi.results.ResultsGMLProperties, \
 planet.generic.commonapi.results.ResultsGMLProperties

The unique names for each results type
RESULTS_UNIQUE_NAME = GML, \
 PAJEK

Figure 16. Example of results configuration into a SCF

As you can see, the results properties class name is the same
for GML and Pajek outputs. The Pajek generator doesn’t use
any external property, but for compatibility within the simulator, it
requires a valid class name.

At last, in the RESULTS_UNIQUE_NAME entry appears the unique
names for the currently available results types. These names are
used into the Java source code to get the required output
results. The GML and Pajek names are included into the
planet.generic.commonapi.results.ResultsNames class.

PlanetSim Tutorial 41

7 Future Work

There are some extensions of this simulator to design and to
implement. We are agreed for any future collaboration on these
terms. In the following list appears some of the future work:

7.1 TCP/IP Wrapper

This point should add the ability to run this simulator under a
simulated or experimental environment. Currently only has been
implemented the simulated environment, where whole network is
built step by step (simulated time). The next step is to build the
necessary architecture and elements into the simulator to be
able to run the whole network under an experimental
environment, using TCP or UDP communication between nodes.

Suggestions:
We have just included a new attribute on the SCFs with the
name SIMULATOR_ENVIRONMENT to show the desired execution
environment: SIMULATION (only this is available at now) and
EXPERIMENTAL (for real TCP/IP communication).

7.2 Gathering Statistics

The current implementation is focused to get the maximum
speedup on all simulation tests. But, other requirements are
necessary in a research environment, as for example, the
statistics. Number of connections currently available, number of
incoming RouteMessages, number of outgoing RouteMessages,
average of hops in RouteMessages delivering and so on is
examples of statistics to gather on the most of tests.

Suggestions:
We believe that the AOP is a good candidate in this job.
Because of all Node implementations are no variable, you
should build some Aspects to intercept any required information
and gather this data into the internal structure of Aspects. The
benefits of this schema are the followings:

1. No reprogramming is required. Only a recompilation
with or without aspects is needed to get a simulation with
statistics or with the maximum speedup, respectively.

2. No other cost is added. When a simulation with the
maximum speedup is needed, the data structure and
process to gathering statistics doesn’t affect to the test.

PlanetSim Tutorial 42

8 Annexes

A. Chord implementation specification
B. Symphony implementation specification
C. Properties: configuration files specification

PlanetSim Tutorial 43

A. Chord implementation specification

The current implementation of Chord overlay is based on [1],
with the broadcast algorithm specified on [2]. The source code
appears within packages planet.chord and
planet.chord.message.

Data Structure
The most important data structure is related to the node
connectivity. They are the finger table and the successor list.

The finger table has the same number of entries than number
of bits of the Id (by default 32, in the available range of
[32..160]). Each entry of this table represents a jump of 2i where
i goes in range [0..MAX_BITS-1] (by default between [0..31]).

The successor list is a collection of real successors of
successors of each node, with a certain maximum number (by
default 16).

Periodic tasks
There are two periodic tasks that force the stabilization of the
node and review the finger table entries are correct. These two
tasks update both data structures specified above: finger table
and successor list. The rest of communication is on demand.

Brief description of Chord communication
There are some types of communication between Chord nodes.
Any communication category as successor list specification,
broadcast messages and so on are defined as communication
types. For each type can appear different modalities of
communication: one has to require an answer, other ones no
response is required and so on. These modalities are defined as
communication modes. So, to identify a RouteMessage in any
communication is needed to specify its type and mode. See the
following figure for more details:

PlanetSim Tutorial 44

Figure 17. RouteMessage Flow in Chord

Description of communication objectives per type:

1. DATA: Type reserved to send any message of the
Application level.

2. BROADCAST: Type reserved to send broadcast
messages.

3. SET_SUCC: Shows the new successor to some node.
4. GET_PRE: Requests the predecessor of some key.
5. NOTIFY: Based on the GET_PRE response, send a

NOTIFY RouteMessage to show that the local node is the
predecessor of another one.

6. SUCC_LIST: Type reserved to maintain and inform the
current successor list of the nodes.

7. SET_PRE: Type reserved to set the predecessor node
from a node.

8. FIND_SUCC: Type reserved to find the successor of the
local node.

9. FIND_PRE: Type reserved to find the immediate
successor of any new incoming node to the network.

There are only three communication modes:

1. REFRESH: Shows that a RouteMessage is only one-way.
No response is required.

PlanetSim Tutorial 45

2. REQUEST: This mode specifies that a response is
required.

3. REPLY: This mode is the response for a REQUEST
RouteMessage.

PlanetSim Tutorial 46

B. Symphony implementation specification

The current implementation of Symphony overlay is based on
[13]. The source code appears within packages
planet.symphony, planet.symphony.behaviours and
planet.symphony.messages.

Data Structure
The most important data structure is related to the node
connectivity. They are the incoming list, outgoing list and
neighbours set.

The incoming list is the collection of incoming and locally
accepted long distance connections from other nodes, with a
maximum number of these connections.

The outgoing list is the collection of outgoing and remotely
accepted long distance connections to other nodes, with a
maximum number of these connections.

The neighbours set is the collection of neighbours of the
current node. These neighbours are the successors and
predecessors, with a maximum number of connections for the
successors. Because of the ring topology of Symphony
networks, also will attempt the same number of predecessors.

All these maximums are specified into the Symphony attributes
into the SCF.

Periodic tasks
Only needs a periodic task that force the stabilization of the node
and its neighbours. This task consists to send the full current
neighbours set to the local node neighbours. With this operation,
all nodes are updated with the nearer neighbours, and force
closing farther neighbours connections.

On demand tasks
When the local estimation of the network size is increased up to
200% or is decreased down to 50%, a new task is started to fix
another long distance connection. Its objective is to adapt the
local long distance connections to the current network topology.

Brief description of Symphony communication
There are some types of communication between Symphony
nodes. Any communication category is defined as
communication types. For each type can appear different

PlanetSim Tutorial 47

modalities of communication: one has to require an answer,
other ones no response is required and so on. These modalities
are defined as communication modes. So, to identify a
RouteMessage in any communication is needed to specify its
type and mode.

Description of communication objectives per type:

1. DATA: Type reserved to send any message of the
Application level.

2. QUERY_JOIN: Message sent when a node joins to the
network and queries for its immediate successor.

3. SET_INFO: Type reserved to send all current neighbours
set to node neighbours for fixing them.

4. QUERY_CONNECT: Type reserved to request of a new
long distance.

5. ACCEPT_CONNECT: Type reserved for a positive
response of a QUERY_CONNECT.

6. CANCEL_CONNECT: Type reserved for a negative
response of a QUERY_CONNECT.

7. CLOSE_LONG_CONNECT: Type reserved to force the
closing of a long distance connection from a peer.

8. CLOSE_NEIGHBOUR_CONNECT: Type reserved to
force the closing of a neighbour connection from a peer.

There are only three communication modes:

1. REFRESH: Shows that a RouteMessage is only one-way.
No response is required.

2. REQUEST: This mode specifies that a response is
required.

3. REPLY: This mode is the response for a REQUEST
RouteMessage.

PlanetSim Tutorial 48

C. Properties: configuration files specification

Figure 18. Properties loading process

This is the process followed by the planet.util.Properties to load
all attributes from a SCF:

1. planet.util.Properties opens the MCF and search a key
specified from the current test.

2. On the MCF appear all available entries for all currently
distributed tests. The key refers to a specific test and the
value is the path to the SCF required for that test. Once
this path is get, planet.util.Properties opens this SCF.

3. The third step is the hardest. All required attributes have
to be loaded into the own planet.util.Properties. It
contains attributes to save the loaded values from the
SCF. These values can be String, int or Class instances
on the most of cases. When a Class is loaded, it verifies
that the required interface or abstract class is
implemented or extended.

C.1. Master Configuration File (MCF)

This is the currently distributed MCF:

Main configuration file: #
----------------------------- #
This file specifies which real configuration file is used to run #
the desired test. #

How to use: #
----------------------------- #
By default, all keys of this file just specify the required #
configuration file for each test. You can modify their values at #
any moment to put any other filename. #

If appears repeatedly the same key, you can select which is the #
current configuration for that test. How? Only you have to leave #
uncomment one of them. #

Remember that you can modify the values that appear in #

planet.
util.

Properties

Master
Configuration

File
(MCF)

Specific
Configuration

File
(SCF)

PlanetSim Tutorial 49

configuration files, too. #

Made by: #
Jordi Pujol Ahullo (jordi.pujol@estudiants.urv.es) #
Under: #
Planet Project: http://ants.etse.urv.es/planet #
PlanetSim: htpp://ants.etse.urv.es/planetsim #

The following properties specifies required configuration file for#
each test.

This test only runs under Chord overlay

IDTEST = ../conf/chord.properties

SIMNETTEST = ../conf/chord.properties
#SIMNETTEST = ../conf/symphony.properties

This test only runs under Chord overlay

SIMPLETEST = ../conf/chord.properties

This test only runs under Chord overlay

SIMTEST = ../conf/chord.properties

TESTPOOL = ../conf/chord.properties

This test only runs under Chord overlay

BAD_SIMNETTEST = ../conf/chord.properties

This test only runs under Chord overlay (because implements the
broadcast)

BROADCAST_BROADCASTTEST = ../conf/chord_broadcast.properties

###
This test only runs under Chord overlay

DHT_DHTTEST = ../conf/chord_dht.properties

###
#DHT2_DHTTEST = ../conf/chord_dht2.properties
DHT2_DHTTEST = ../conf/symphony_dht2.properties

###
###########
FACTORY_TESTAPPFACTORY = ../conf/chord.properties

PlanetSim Tutorial 50

#FACTORY_TESTAPPFACTORY = ../conf/symphony.properties
#FACTORY_TESTAPPFACTORY = ../conf/trivial.properties

###
FACTORY_TESTENDPOINTFACTORY = ../conf/chord.properties
#FACTORY_TESTENDPOINTFACTORY = ../conf/symphony.properties
#FACTORY_TESTENDPOINTFACTORY = ../conf/trivial.properties

###
FACTORY_TESTIDFACTORY = ../conf/chord.properties
#FACTORY_TESTIDFACTORY = ../conf/symphony.properties
#FACTORY_TESTIDFACTORY = ../conf/trivial.properties

###
This test only runs under Chord and Symphony overlays
(The Trivial P2P requires specific stabilization process)

FACTORY_TESTNETFACTORY = ../conf/chord.properties
#FACTORY_TESTNETFACTORY = ../conf/symphony.properties

###
FACTORY_TESTNODEFACTORY = ../conf/chord.properties
#FACTORY_TESTNODEFACTORY = ../conf/symphony.properties
#FACTORY_TESTNODEFACTORY = ../conf/trivial.properties

###
FACTORY_TESTNODEHANDLEFACTORY = ../conf/chord.properties
#FACTORY_TESTNODEHANDLEFACTORY = ../conf/symphony.properties
#FACTORY_TESTNODEHANDLEFACTORY = ../conf/trivial.properties

###
This test only runs under Chord and Symphony overlays
(The Trivial P2P requires specific stabilization process)

GML_GMLTOPOLOGY_GMLTOPOLOGYTEST = ../conf/chord.properties
#GML_GMLTOPOLOGY_GMLTOPOLOGYTEST = ../conf/symphony.properties

###
This test only runs under Chord and Symphony overlays
(The Trivial P2P requires specific stabilization process)

HELLOWORLD_DHTPEERTEST = ../conf/chord.properties
#HELLOWORLD_DHTPEERTEST = ../conf/symphony.properties

###
This test only runs under Chord overlay

SCRIBE_SCRIBEPEERTEST = ../conf/chord_scribe.properties

###
This test only runs under Chord overlay

SCRIBE_SCRIBETEST = ../conf/chord_scribe.properties

###
###########
This test only runs under Chord overlay

SERIALIZE_GENSERIALIZEDFILE = ../conf/chord.properties

PlanetSim Tutorial 51

###
You have to ensure the match of serialized network with current
configuration

SERIALIZE_LOADSERIALIZEDFILE = ../conf/chord_serialize.properties
#SERIALIZE_LOADSERIALIZEDFILE = ../conf/symphony_serialize.properties

###
This test only runs under Chord and Symphony overlays
(The Trivial P2P requires specific stabilization process)

SERIALIZE_SERIALIZENETWORK = ../conf/chord.properties
#SERIALIZE_SERIALIZENETWORK = ../conf/symphony.properties

###
TRIVIALP2PTEST_TRIVIALTEST = ../conf/trivial.properties

Figure 19. PLANETSIM/conf/master.properties MCF

This file structure offers the ability to run any test without to
modify any file other file, by default. It associates a SCF to each
test.

If there are more than one available SCF for one test, it appears
one key uncommented and the other ones commented (with ‘#’
at the beginning). You can choose the SCF to use at any
moment leaving uncomment only the desired line. On these
cases, each line relates an available overlay.

If only there is a line for a test, it is only the overlay available and
you have not to force it with other ones.

C.2. Specific Configuration File (SCF)

A SCF relates one overlay with one or more tests. So, each SCF
contains the values required for that overlay and correct values
for those tests. To modify any value you have to know its effects
and other possible values.

We show a SCF for the Symphony overlay because it is a good
example:

Chord configuration file: #
----------------------------- #
This file specifies all properties (including the Chord specifics #
ones) to run any test with the Chord overlay. #

How to use: #
----------------------------- #
All properties are divided into different semantical parts. #
You must specify the desired properties values into the following #
lines. #

Made by: #

PlanetSim Tutorial 52

Jordi Pujol Ahullo (jordi.pujol@estudiants.urv.es) #
Under: #
Planet Project: http://ants.etse.urv.es/planet #
PlanetSim: htpp://ants.etse.urv.es/planetsim #

FACTORIES PART #

########## MANDATORY ATTRIBUTES

The default NetworkFactory class
FACTORIES_NETWORKFACTORY =
planet.generic.commonapi.factory.NetworkFactoryImpl

The default IdFactory class
FACTORIES_IDFACTORY = planet.generic.commonapi.factory.IdFactoryImpl

The default NodeHandleFactory class
FACTORIES_NODEHANDLEFACTORY =
planet.generic.commonapi.factory.NodeHandleFactoryImpl

The default NodeFactory class
FACTORIES_NODEFACTORY =
planet.generic.commonapi.factory.NodeFactoryImpl

The default RouteMessagePool class
FACTORIES_ROUTEMESSAGEPOOL =
planet.generic.commonapi.factory.RouteMessagePoolImpl

The default Network class
FACTORIES_NETWORK = planet.generic.commonapi.NetworkImpl

The default NodeHandle class
FACTORIES_NODEHANDLE = planet.generic.commonapi.NodeHandleImpl

The default RouteMessage class
FACTORIES_ROUTEMESSAGE = planet.generic.commonapi.RouteMessageImpl

The default network topology.
Default possible values: RANDOM |CIRCULAR | SERIALIZED
FACTORIES_NETWORKTOPOLOGY = RANDOM

The default initial network size
FACTORIES_NETWORKSIZE = 1000

########## OPTIONAL ATTRIBUTES: Test dependant

The default ApplicationFactory class
FACTORIES_APPLICATIONFACTORY =
planet.generic.commonapi.factory.ApplicationFactoryImpl

The default EndPointFactory class
FACTORIES_ENDPOINTFACTORY =
planet.generic.commonapi.factory.EndPointFactoryImpl

The default Application class
FACTORIES_APPLICATION = planet.test.helloworld.DHTApplication

PlanetSim Tutorial 53

The default EndPoint class
FACTORIES_ENDPOINT = planet.generic.commonapi.EndPointImpl

SIMULATOR PART #

########## MANDATORY ATTRIBUTES

The number of stabilization steps for any node at join or leave
Default value: 2
SIMULATOR_SIMULATION_STEPS = 2

The log level (to use by Logger.log(...))
Default possible values (from more to less important logs): 0
(error), 1 (events), 2 (node info), 3 (message)
SIMULATOR_LOG_LEVEL = 0

The print level for whole network (to use by
GenericApp.printNetwork() method)
Default possible values: 0 (no print), 1 (pretty print), 2 (full
print)
SIMULATOR_PRINT_LEVEL = 2

The environment for the current simulation
Default possible values: SIMULATION (by steps), EXPERIMENTAL (by
threads and real TCP connections)
Only SIMULATION has available
SIMULATOR_ENVIRONMENT = SIMULATION

The queue size for the incomming and outgoing queues
Default value: 128
SIMULATOR_QUEUE_SIZE = 128

The maximum number of messages to be processed per node per step
Default value: 128
SIMULATOR_PROCESSED_MESSAGES = 128

########## OPTIONAL ATTRIBUTES: Test dependant

The events filename to load
SIMULATOR_EVENT_FILE =

SERIALIZATION PART #

########## OPTIONAL ATTRIBUTES: Test dependant

Serialized file that contains the network to be loaded
SERIALIZATION_INPUT_FILE = network.psim

Filename to which serialize the final state
SERIALIZATION_OUTPUT_FILE = network.psim

Identifies if the output file must be replaced with new outputs,
when the state is serialized
SERIALIZATION_REPLACE_OUTPUT_FILE = false

PlanetSim Tutorial 54

BEHAVIOURS PART #

########## OPTIONAL ATTRIBUTES: Overlay dependant

The default BehaviourFactory class
BEHAVIOURS_FACTORY =
planet.generic.commonapi.behaviours.BehavioursFactoryImpl

The default BehavioursPool class
BEHAVIOURS_POOL =
planet.generic.commonapi.behaviours.BehavioursPoolImpl

The default BehavioursRoleSelector class
BEHAVIOURS_ROLESELECTOR =
planet.generic.commonapi.behaviours.BehavioursRoleSelectorImpl

The default BehavioursInvoker class
BEHAVIOURS_INVOKER =
planet.generic.commonapi.behaviours.BehavioursInvokerImpl

The default BehavioursFilter class
BEHAVIOURS_FILTER =
planet.generic.commonapi.behaviours.BehavioursIdleFilter

The default BehavioursPattern class
BEHAVIOURS_PATTERN =
planet.generic.commonapi.behaviours.BehavioursPatternImpl

The default PropertiesInitializaer class for the behaviours
properties
BEHAVIOURS_PROPERTIES =
planet.generic.commonapi.behaviours.BehavioursPropertiesImpl

The default number of message types used in the current overlay
Default value for Symphony: 8
BEHAVIOURS_NUMBEROFTYPES = 8

The default number of message modes used in the current overlay
Default value for Symphony: 3
BEHAVIOURS_NUMBEROFMODES = 3

SPECIFIC PROPERTIES OF BEHAVIOURS PART #

########## OPTIONAL ATTRIBUTES: Overlay dependant

The default percentage of faulty nodes
Default possible values: [0..100]
BEHAVIOURS_PROPERTIES_FAULTY_NODES = 0

The default distribution of malicious node
Default possible values: UNIFORM | CHAIN
BEHAVIOURS_PROPERTIES_MALICIOUS_DISTRIBUTION = CHAIN

Identifies when to show specific debug info for behaviours
BEHAVIOURS_PROPERTIES_DEBUG = false

PlanetSim Tutorial 55

NOTE: The following keys start by 'BEHAVIOURS_PROPERTIES_INSTANCE',
ended with an incremental integer number to make them different

All required instances for the current behaviours implementation
COLUMN NAMES:
MESSAGE MESSAGE
UNIQUE NAME = BEHAVIOUR CLASS
, TYPE , MODE , PROBABILITY , LOCALITY , ROLE
#--

BEHAVIOURS_PROPERTIES_INSTANCE_1 =
planet.symphony.behaviours.RoutingBehaviour, ?,
*, 1.0, REMOTE, NEUTRAL
BEHAVIOURS_PROPERTIES_INSTANCE_2 =
planet.symphony.behaviours.QueryJoinBehaviour,
QUERY_JOIN, REFRESH, 1.0, LOCAL, NEUTRAL
BEHAVIOURS_PROPERTIES_INSTANCE_3 =
planet.symphony.behaviours.SetInfoBehaviour, SET_INFO,
REFRESH, 1.0, LOCAL, NEUTRAL
BEHAVIOURS_PROPERTIES_INSTANCE_4 =
planet.symphony.behaviours.QueryConnectBehaviour,
QUERY_CONNECT, REFRESH, 1.0, LOCAL, NEUTRAL
BEHAVIOURS_PROPERTIES_INSTANCE_5 =
planet.symphony.behaviours.AcceptConnectBehaviour,
ACCEPT_CONNECT, REFRESH, 1.0, LOCAL, NEUTRAL
BEHAVIOURS_PROPERTIES_INSTANCE_6 =
planet.symphony.behaviours.CancelConnectBehaviour,
CANCEL_CONNECT, REFRESH, 1.0, LOCAL, NEUTRAL
BEHAVIOURS_PROPERTIES_INSTANCE_7 =
planet.symphony.behaviours.CloseLongConnectBehaviour,
CLOSE_LONG_CONNECT, REFRESH, 1.0, LOCAL, NEUTRAL
BEHAVIOURS_PROPERTIES_INSTANCE_8 =
planet.symphony.behaviours.CloseNeighbourConnectBehaviour,
CLOSE_NEIGHBOUR_CONNECT, REFRESH, 1.0, LOCAL, NEUTRAL
BEHAVIOURS_PROPERTIES_INSTANCE_9 =
planet.symphony.behaviours.DataBehaviour, DATA,
*, 1.0, ALWAYS, NEUTRAL

Default possible values:
BEHAVIOUR CLASS, MESSAGE TYPE, MESSAGE MODE ==> Overlay dependant
PROBABILITY ==> [0.0 .. 1.0] (never .. always)
LOCALITY ==> LOCAL | REMOTE | ALWAYS
ROLE ==> GOOD | BAD | NEUTRAL

OVERLAY PART #

########## MANDATORY ATTRIBUTES

The default Id class
OVERLAY_ID = planet.symphony.SymphonyId

The default Node class
OVERLAY_NODE = planet.symphony.SymphonyNode

The default OverlayProperties implementation class
OVERLAY_PROPERTIES = planet.symphony.SymphonyProperties

PlanetSim Tutorial 56

Identifies if this overlay implementation uses behaviours
Default possible values: false | true
OVERLAY_WITH_BEHAVIOURS = true

###
SYMPHONY SPECIFIC PART #

########## MANDATORY ATTRIBUTES

The default number of long distance connections
Default value: 2
SYMPHONY_MAX_LONG_DISTANCE = 2

The default maximum number of members in successor list
Default value: 2
SYMPHONY_MAX_SUCCESSOR_LIST = 2

The default maximum number of retries to obtain a connection
to the same long distance node
Default value: 3
SYMPHONY_MAX_RETRIES_NEW_LONG_DISTANCE = 3

The default maximum number of retries to enter to the network by
the same bootstrap
Default value: 10
SYMPHONY_MAX_JOIN_RETRIES = 10

The default number of stabilize steps
Default value: 3
SYMPHONY_STABILIZATION_STEPS = 3

RESULTS PART #

IMPORTANT: All different results attributes must appear in comma
separated format, using each position for the same results type for
all attributes.

########## OPTIONAL ATTRIBUTES: Test dependant

The default ResultsFactory class
RESULTS_FACTORY =
 planet.generic.commonapi.results.ResultsFactoryImpl, \
 planet.generic.commonapi.results.ResultsFactoryImpl

The default ResultsEdge class
RESULTS_EDGE =
 planet.generic.commonapi.results.ResultsEdgeImpl, \
 planet.generic.commonapi.results.ResultsEdgeImpl

The default ResultsConstraint class
RESULTS_CONSTRAINT =
 planet.generic.commonapi.results.ResultsIdleConstraint, \
 planet.generic.commonapi.results.ResultsIdleConstraint

The default ResultsGenerator class

PlanetSim Tutorial 57

RESULTS_GENERATOR =
 planet.generic.commonapi.results.ResultsGMLGenerator, \
 planet.generic.commonapi.results.ResultsPajekGenerator

The default PropertiesInitializer for results properties
RESULTS_PROPERTIES =
 planet.generic.commonapi.results.ResultsGMLProperties, \
 planet.generic.commonapi.results.ResultsGMLProperties

The unique names for each results type
RESULTS_UNIQUE_NAME = GML, \
 PAJEK

GML SPECIFIC RESULTS PART #

########## OPTIONAL ATTRIBUTES: Test dependant

The default width of the virual bounding box
RESULTS_PROPERTIES_GML_WIDTH = 20.0f

The default height of the virtual bounding box
RESULTS_PROPERTIES_GML_HEIGHT = 20.0f

The default shape of the node
RESULTS_PROPERTIES_GML_SHAPE = ellipse

The default fill color for the shape of the node (in #'RRGGBB'
format)
RESULTS_PROPERTIES_GML_FILL = CCCCFF

The default alternative fill color for the shape of the node (in
#'RRGGBB' format)
RESULTS_PROPERTIES_GML_ALTERNATIVE_FILL = 00FF66

The default color of the border line (in #'RRGGBB' format)
RESULTS_PROPERTIES_GML_OUTLINE = 000000

The default font size of the node Id lavel
RESULTS_PROPERTIES_GML_FONT_SIZE = 12

The default font name of the node Id label
RESULTS_PROPERTIES_GML_FONT_NAME = dialog

The default minimal node distance arranged on a circle
RESULTS_PROPERTIES_GML_MINIMAL_NODE_DISTANCE = 50

Figure 20. PLANETSIM/conf/symphony.properties SCF

This is one SCF for the Symphony overlay. As you can see,
there are different parts. But, there are some ones that are
mandatory. They are the following:

1. FACTORIES PART: On it appears all basic classes to be
loaded by the simulator, including the factory classes
(following the Factory Method design pattern) and all the
instance to be built by these factories. The last lines are

PlanetSim Tutorial 58

related to the Application level, and only will be loaded on
demand.

2. SIMULATOR PART: These attributes are related to the
basic simulator operation, like size of internal queues for
incoming and outgoing RouteMessages and so on. The
last line are related to the events filename, and only will
be loaded on demand.

3. OVERLAY PART: It defines all classes related to the
overlay to be loaded: Node, Id and OverlayProperties.
The last line shows when the current overlay uses
behaviours. When true, the optional BEHAVIOURS PART
is loaded automatically.

The rest of the parts are test or overlay dependant. See below
for their descriptions (in order of appearance):

1. SERIALIZATION PART: These attributes show the file
with the serialized network to be loaded and the path
where save the current state.

2. BEHAVIOURS PART: This part is automatically loaded
when the overlay uses behaviours, and specifies all
classes to use for the behaviours architecture.

3. SPECIFIC PROPERTIES OF BEHAVIOURS PART:
These attributes are overlay dependant and also are
loaded when the overlay uses behaviours.

4. SYMPHONY SPECIFIC PART: Each overlay can specify
its own attributes. In this example is Symphony.

5. RESULTS PART: This part is test dependant and offers
the ability of write outputs of specified types. Contains all
required classes to build the output and no blank can
appear.

6. GML SPECIFIC RESULTS PART: When a result type
needs some specific attributes, they also have to appear
on this document. In the example, GML attributes are
specified.

PlanetSim Tutorial 59

9 References

[1] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications”, ACM SIGCOMM 2001, San
Diego, CA, pp. 149-160, August 2001

[2] El-Ansaray, S.; Alima, L.O.; Brand, P.; et al. “Efficient
Broadcast in Structured P2P Networks”, 2nd International
Workshop on Peer-to-Peer Systems, IPTPS’03, Berkeley, CA,
Febraury 2003

[3] Castro, M., Druschel, P., et al, “Scalable Application-level
Anycast for Highly Dynamic Groups”, Proc. of NGC’03,
September 2003.

[4] Dabek, F., Zhao, B.Y., Druschel, P., Kubiatowicz, J., and
Stoica I., “Towards a Common API for Structured Peer-to-Peer
Overlays”, 2nd International Workshop on Peer-to-Peer Systems,
IPTPS’03, Berkeley, CA, February 2003.

[5] Gummadi, K., Saroiu, S., et al., “King: Estimating latency
between arbitrary Internet end hosts”, Proceedings of the 2002
SIGCOMM Internet Measurement Workshop. Marseille, France,
November 2002.

[6] Medina, A., Lakhina, A., Matta, I., et al. “BRITE: An Approach
to Universal Topology Generation”, Proceedings of the
International Workshop on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems (MASCOTS 2001).
Cincinnati, Ohio, August 2001.

[7] Pairot, C., García, P., Gómez Skarmeta, A.F., “DERMI: A
Decentralized Peer-to-Peer Event-Based Object Middleware”,
Proceedings of ICDCS’04, Tokyo, Japan, pp. 236-243.

[8] Pairot, C., García, P., Gómez Skarmeta, A.F., “Dermi: A New
Distributed Hash Table-based Middleware Framework”, IEEE
Internet Computing, Vol. 8, No. 3, May/June 2004, pp. 74 – 84.

[9] PeerSim Peer-to-Peer Simulator.
http://peersim.sourceforge.net/

[10] Rodriguez, A., Killian, C., Bhat, S., et al., “MACEDON:
Methodology for Automatically Creating, Evaluating, and
Designing Overlay Networks”, Proceedings of the USENIX/ACM
Symposium on Networked Systems Design and Implementation
(NSDI 2004), March 2004.

PlanetSim Tutorial 60

[11] Rowstron, A., and Druschel, P., “Pastry: Scalable,
decentralized object location and routing for large-scale peer-to-
peer systems”, IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), pp. 329-350,
November 2001.

[12] Stoica, I., Morris, D., Karger, D., et al. “Chord: A Scalable
Peer-to-peer- Lookup Service for Internet Applications”,
Proceedings of the ACM SIGCOMM 2001, San Diego, CA,
August 2001, pp. 149-160.

[13] Singh, G.M., Bawa, M., Raghavan, P. “Symphony:
Distributed Hashing in a Small World”. Proceedings of USITS’03,
Seattle, WA.

[14] The Network Simulator – ns – 2.
http://www.isi.edu/nsnam/ns/

[15] J-Sim. http://www.j-sim.org/

[16] MACEDON. http://macedon.ucsd.edu/

[17] The GML file format:
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/

[18] yEd – Java ™ Graph Editor
http://www.yworks.com/en/products_yed_about.htm

[19] Pajek. http://vlado.fmf.uni-lj.si/pub/networks/pajek/

