
PlanetSim Release 3.0 Candidate
in depth

Jordi Pujol Ahulló
Universitat Rovira i Virgili

jordi.pujol@urv.net

Copyright

• © University Rovira i Virgili

• Permission is granted to copy, distribute and/or
modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software
Foundation; provided its original author is
mentioned and the link to http://libre.act-
europe.fr/ is kept at the bottom of every non-title
slide. A copy of the license is available at:

• http://www.fsf.org/licenses/fdl.html

Index

• Introduction: Use cases

• Architecture: Simulator, Node, RouteMessage
structure, Factories, RouteMessagePool

• Configuration: tuning

• Life cycle: Simulation, Applications, Application
level messages

Introduction

• Open code project
• Framework for overlay network simulation
• Implemented in Java
• Layered architecture (decouple p2p

protocols from applications)
• Advanced visualization output

(Pajek, GML)

Use Cases: Researcher

2. Build network
with nodes

6. Stabilize

3. Build network
by events

<extends>

Researcher

4. Serialize
network

5. Deserialize
network

7. Run
applications over

the network

<extends>

<includes>

1. Simulate
time-steps

<includes>

Use cases: Researcher (II)

1. Simulate time-steps:
Run specified number of time-steps within
current network. The simulator processes all
nodes this number of time-steps and delivers
generated messages at each time-step to the
target nodes.

2. Build network with nodes:
Build network with the specified number of
nodes. Can be built a zero-sized network. A
cofigured number of time-steps is run between
each node join.

Use cases: Researcher (III)

3. Build network by events
1. A zero-sized network has to be built.
2. All events in specified file will be loaded.
3. Only node events: { JOIN | LEAVE | FAIL }

4. Serialize network
Save on disk the current network. Waste time
only once: reuse simulated networks different
times.

5. Deserialize network
Load from disk a serialized network. It will be
presented as before being serialized. Continue
your research at this point.

Use cases: Researcher (IV)

6. Stabilize
Post-conditions:

- Overlay network stabilized
- Only overlay maintenance messages
- No application level messages remain to deliver

7. Run application over the network
Add/Register the applications to the nodes,
focus of your research, and evaluate its
operation.

Use cases: Developer

2. Implement
applicationsDeveloper

1. Implement KBR

Use cases: Developer (II)

1. Implement KBR
• Implement new KBR overlay networks, like Pastry

or Chord.
• Mainly, it requires the related node

implementation, following the new overlay
protocol.

2. Implement applications
Develop new compatible applications for these
KBR overlay networks, not focused on any
specific KBR.

PlanetSim Architecture

PlanetSim Architecture cont’d
Network layer Node layer Application layer

Node Architecture

• Layered definition

Message

RouteMessage

Node N Node M

NodeHandle

Node

End
Point

End
Point

…

Applic
ation

Applic
ation

…

NodeHandle

Node

End
Point

End
Point

…

Applic
ation

Applic
ation

…

RouteMessage

RouteMessage Structure

• Extensible
• Invariants:

– Source: 48
– Destination: 4
– Key: 8123
– AppId: “”
– Message: “Put sth”

• Variants:
– NextHop: 56

Source Destination NextHop Key AppId Message

K54

2m-1 0
N1

N48

N51

N56

K4

NextHop

Destination

Factories

• Interfaces that follow the Factory Method
design pattern
– Goal: Build elemental instances, without mean

real implementations
– {Application|EndPoint|Node|NodeHandle|

Id}Factory

• GenericFactory:
– A “super-factory”, that uses specified factories

implementations within simulation

RouteMessagePool

• Time and resources eficiency is required
• Java Garbage Collector is our “enemy”. No

“new XYZ(…);” in your code!!
• A lot of RouteMessages are used within a

simulation
• RouteMessages have a very short life time
• A Pool of RouteMessages is the most suitable

design:
getRouteMessage() & freeRouteMessage()

• Note: The RouteMessage’s life cycle is
handled by the programmer

Configuration: Tuning

• Example: Running a test called “SIMNETTEST”

Simulator master.properties

chord.properties

symphony.properties

trivial.properties

. . .

GenericApp.start("../conf/master.properties",
TestNames.SIMNETTEST,false,false,false,false);

//TestNames.SIMNETTEST = “SIMNETTEST”

SIMNETTEST = ../conf/chord.properties
#SIMNETTEST = ../conf/symphony.properties
#SIMNETTEST = ../conf/chord.properties
SIMNETTEST = ../conf/symphony.properties

Without
recompiling!

Configuration: Tuning cont’d

• Steps for adding a new test (recommended):
– Select a non repeated name for the test and put

it in planet.test.TestNames
– Put this name into the conf/master.properties

and associate the final(s) configuration files
FACTORY_TESTAPPFACTORY = ../conf/chord.properties
#FACTORY_TESTAPPFACTORY = ../conf/symphony.properties
#FACTORY_TESTAPPFACTORY = ../conf/trivial.properties

– Create your own configuration files (if necessary),
based on {chord|symphony}.properties

– Build the test itself under planet.test hierarchy

Simulation’s life cycle

Simulation’s life cycle cont’d

Applications management

Applications management cont’d

Application level messages life cycle

Application level messages life cycle

