
MOVE: Component Groupware Foundations for
Collaborative Virtual Environments

Pedro García, Oriol Montalà, Carles Pairot
and Robert Rallo

Department of Computer Science,
 University Rovira i Virgili

Email: pgarcia@etse.urv.es, {omp.ei,
cpg.ei}@estudiants.urv.es

Antonio Gómez Skarmeta
Department of Computer Engineering,

University of Murcia
Email: skarmeta@fcu.um.es

ABSTRACT
The design of a Virtual Environment (VE) is a distributed
problem of multi-user access to shared resources. Such problem
requires careful design decisions in order to provide a seamless
system infrastructure capable of supporting flexible interactions in
the shared scenarios.

The complexity of this domain has led to intricate software
systems that provide ad-hoc solutions to specific problems.
Furthermore, many of them have gone to a dead end, due to their
non-extensible design and their lack of code and module reuse.

This paper presents a VE that is constructed on top of a
component groupware framework. Our major aim is to provide an
extensible infrastructure offering a set of collaborative services in
a seamless way. At the conceptual level, it provides essential
collaborative services: shared sessions, support for synchronous
and asynchronous components, security, coordination, and a
server-side awareness infrastructure. At the architectural level, the
framework is constructed on top of a middleware integration
platform and uses high performance publish/subscribe notification
services. Finally, we present the advantages and limitations of this
approach.

Categories and Subject Descriptors
D.2.1.1 [Software Engineering]: Software Architectures –
domain specific architectures.

General Terms
Design, Experimentation.

Keywords
Virtual Environments, Frameworks, Component Groupware,
Distributed Systems.

1. INTRODUCTION
In the last years we have been experiencing advances in
networking technologies and protocols as well as database,
computer graphics and display technology. As a consequence, a
lot of Collaborative Virtual Environments have emerged thanks to
the increasing computation capabilities of desktop computers as
well as the enormous growth in network bandwidth and the
ubiquity of the Internet.

In this line, many research efforts have tried to solve the
distributed problems inherent to the design of VEs. Relevant
examples of these VEs are DIVE [3], MASSIVE [5], NPSNET
[10] or SPLINE [9]. Many of them have successfully addressed
problems like world structuring and zone partitioning, state
propagation, coordination and consistency, and interest
management and awareness.

Nevertheless, the complexity of the domain has led to huge
intricate software systems that are difficult to extend and reuse,
and thus precluding system interoperability and flexibility. To
cope with these problems, the trend is to augment modularization
in the design of such infrastructures.

JADE [11] contributes to augment design modularization
proposing a generic component framework that outlines system
interoperability. However, this proposal specifies a minimal
kernel focused on inter-communication capabilities that do not
offer collaborative services like session and zone management,
state propagation, coordination and consistency, and awareness.

Another interesting approach is the NSPNET-V move towards
component architectures. NSPNET Bamboo [16] is a component
system where code modules operate in a cross-platform and cross-
language manner. In NSPNET-V, Java components can be
dynamically loaded at runtime and XML is used as a message
interchange format.

We also outline as a key problem in the design of VEs the lack of
awareness services enabling the extraction of information from the
running infrastructure in order to better understand the group
interactions by means of indicators or data-analysis tools. These
awareness services can improve the shared experience and enable
situational reactions to specific events in the multi-user
environment.

In this line, the TOWER [15] project is developing an
infrastructure to provide awareness by analysing events from
groupware systems and visualizing them using Blaxxun

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CVE ’02, September 30-October 2, 2002, Bonn, Germany.
Copyright 2002 ACM 1-58113-489-4/02/0009…$5.00.

technologies. On the other hand, MASSIVE-3 [5] includes
Record and Replay mechanisms that permit to recover and
reconstruct collaboration flows in the shared scenarios. Our
approach goes further; we consider it is very important to design
VEs considering those awareness services that enable situational
reactions to events in the environment.

To finish with, we also outline two declarative component
approaches like CONTIGRA [2] and Jamal [14]. Both approaches
define XML-based mark-up languages for 3D component
description and assembly. With well-defined component
interfaces and descriptors it is possible to automate code-
generation and benefit from dynamic introspection mechanisms.

In order to solve the problems mentioned above, we construct our
MOVE environment on top of a component groupware framework
called ANTS. This framework offers key collaborative services to
components like session management, state propagation, security,
coordination, and a server-side awareness infrastructure.
Furthermore, the framework is constructed on top of a middleware
integration platform and uses high performance publish/subscribe
notification services. Software facades permit us to change the
underlying middleware services without affecting the upper
layers.

The paper is structured as follows: Section 2 overviews the
MOVE environment and design objectives stated for this system.
Section 3 describes the ANTS framework and presents the
collaborative services offered to components. Section 4 explains
in detail the MOVE architecture specifying how it benefits from
the underlying framework. To finish with, in section 5 we draw
conclusions of our current work and present the advantages and
limitations of this approach.

2. MOVE OVERVIEW
MOVE is a 3D collaborative environment where users (Avatars)
can interact with other users or with shared artefacts like voting
tools, presenters, 3D simulations, documents or multimedia
contents.

MOVE is one of the key applications being tested in the
Catalonian Internet2 project and it is mainly deemed for
educational purposes in different scenarios like virtual classroom
simulations, archaeological or medical applications.

Its architecture benefits from ANTS Computer Supported
Cooperative Work (CSCW) Framework. In addition, MOVE has
been developed using open technologies such as VRML or the H-
Anim v1.1 [6] avatar standard specification. The development
language chosen has been Java and the bridge used to
communicate this language with VRML has been the External
Authoring Interface [17]. The use of open specifications permits
us to work with any VRML2 compliant plugin like Blaxxun or
Cosmo and to select any H-ANIM avatar for user representation
in the shared scene.

2.1 Problems in Existing 3D CVEs
Existing 3D Collaborative Virtual Environments (CVE) presents
certain problems that from our point of view have not yet been
completely resolved:

• The first problem is the high complexity in developing such a
system of this kind. This type of environments must be easily
scalable and should support as many concurrent users as
possible degrading as least as possible system’s performance.
Existing 3D CVEs have dedicated many efforts in
developing the environment itself rather than making it more
scalable or making it component oriented so as new
components may be added in the future. This is what we call
component reusability.

• Another problem is data extraction. These CVEs were not
thought for retrieving data in an easy way. Sometimes it can
be interesting to grab data about what a specific user has
been doing in our environment for data-mining, logging or
capture and replaying purposes.

The solutions that MOVE adopts to solve the problems mentioned
above are:

• Define a component model based on the standard JavaBeans
specification that hides complexity to users providing
transparently remote persistence, distributed events and
component descriptors in XML and packaging. By adopting
this component model we can create new tools that can be
easily inserted into our system by means of “importing”
them.

• Define a dedicated awareness and event monitoring service
together with an agent system which reacts to the events
triggered in the bus. By adopting this method, any kind of
information can be obtained, such as logs, application of
data-mining algorithms or usage of capture and replay
techniques.

To achieve all these objectives, MOVE uses ANTS CSCW
component framework. This infrastructure facilitates development
of collaborative components, and thus achieving a smooth
transition from local to distributed applications.

3. ANTS FRAMEWORK
The ANTS system aims to provide a generic multi-user
collaborative framework. Being the overall problem a complex
distributed challenge, it is necessary to solid distributed
technologies as a basis as well as to provide generic collaborative
services to the user and developer communities. As we can see in
Figure 1, the collaboration bus is a key piece of the overall
architecture.

 Figure 1. ANTS Architecture.

On the one hand, all components trigger events to this distributed
information bus, and on the other hand, awareness components
listen to the bus for information about what is happening in the
system.

While other systems like Lotus PlaceHolder or CORONA used
publish/subscribe middleware to propagate state changes, and
NESSIE or Khronika used it to create awareness systems, none of
them created an integrated framework where the state changes
propagated to the bus can be easily captured by an integrated
awareness system.

In this line, we can consider the collaboration bus not only an
event dispatcher, but a higher level abstraction constructed on top
of publish/subscribe middleware that transparently to developers
creates a state propagation system for shared components and a
mediator system in which third-party actuators can react to
concrete events in the environment.

We can distinguish three main layers in the overall architecture: a
technology layer, a CSCW service layer, and an application layer.
Upper layers represent high level abstractions that hide
complexity to users from the layers below.

In this line, the application layer is aimed to end users that extend
the framework hotspots to create collaborative components and
applications or monitoring agents. The CSCW layer comprises
the set of collaborative services that the framework offers to
application level components. Furthermore, these CSCW services
are built on top of distributed services offered by the underlying
technology layer. Let us show their main functionalities:

• At the application layer, we have created a component model
which abstracts access to a remote property-based persistent
component, and to distributed events produced in the current
session context.

• The CSCW layer comprises the set of collaborative services
that the ANTS framework offers to the application layer in a
coherent way. It thus provides session support, component's
life cycle, communication abstraction, coordination support,
and security. It also includes a seamless server-side platform
for awareness actuators.

• At the technology layer, we have created software
components that transparently facade advanced middleware
services and network components. Our approach permits us
to select from a variety of middleware vendors in database
systems, application servers and notification services.

3.1 Application Layer
At the application layer, the framework provides two extension
hooks: development of new collaborative components and
awareness actuators reacting to information events produced in
the framework. We, however, study awareness actuators in the
CSCW layer as part of the overall awareness model.

Our major aim is to facilitate development of collaborative
components, and thus achieving a smooth transition from local to
distributed applications. Obviously, our approach is to be based
on existing specifications already adopted in the developer
community.

Like many other groupware toolkits [7], we have decided to use
the Java language and the Java Bean component specification as
our preferred development technologies. In this line, our
approach aims to sustain Java Bean components in a container
that hides complexity in distributed programming and networking
skills. The general idea is to provide a property-based persistence
system, and to construct a Java distributed event service.
Components are also packaged in JAR files, and they use XML to
provide component descriptor.

3.2 Component Model
The component model comprises persistence, events,
introspection, packaging, and component deployment in the
ANTS component repository:

Properties are shared data structures stored in the ANTS server.
Each Java Bean component can use three types of properties:
string properties, string indexed properties, and Serializable object
properties. These properties are persistently stored in a database
by the remote property-based component and thus assure
component persistence. We believe that string properties and
indexed properties are a strong base for storing textual or XML
strings containing persistent state. Yet, we supply serializable
object properties enabling storing of more complex java objects.

Following the Java Bean bound properties approach, each
property change will trigger an event (in this case, to the
distributed event service) allowing a later subscription to
PropertyChangeEvents. Completely coherent with the Java Bean
approach, we also provide addPropertyChangeListener methods to
receive property change events in bound properties. In our case,
and transparently to developers, property change events are
received from the distributed notification service and restricted to
events in the current session and component.

Another key issue of the ANTS framework is to support
coordination in a generic way allowing coordination rules for
access control, concurrency control, and floor control. Our
approach is also inspired in the JavaBean model, and particularly
in the constrained properties.

Each method can trigger a PropertyVetoException like in the
constrained property convention. We, however, differ in the
source of the VetoException; in the JavaBean model, vetoes are
thrown by registered VetoableChangeListeners; in our model,
vetoes are thrown by registered coordination managers.
Coordination managers interpose in calls to a component to assure
validity of the requested action

Concerning customization and introspection of components in the
ANTS framework, we provide an XML descriptor file. In general,
a descriptor includes properties and event information. Event
information will be the key for the awareness infrastructure in
order to know which events are triggered by each resource in the
shared environment.

Finally, component packaging uses standard JAR files like in the
Java Bean component model. The package must contain the XML
descriptor, component classes, and any local resource –images,
files– used in the component.

Packaged components can be deployed in the ANTS server
following an automated process. In this process, components are

registered in the component repository using the XML descriptor,
and unpacked resources are copied to the Web container.

The repository is an important element of the overall framework
that permits to get information about registered components, and
allows insertion and removal of artefacts in shared session
contexts.

3.2.1 CSCW Layer
The CSCW layer comprises the set of collaborative services that
the ANTS container offers to the application layer. We will,
however, distinguish two main modules, namely container
runtime (ANTS.CORE) and awareness services (ANTS.AWS),
seamlessly interconnected by the collaboration bus.

ANTS.CORE comprises a generic and extensible application layer
for collaborative tools, providing services like shared sessions,
coordination control, and integration for both synchronous and
asynchronous applications. ANTS.AWS is a generic awareness
service providing appropriate actuators for events received from
the collaboration bus.

3.2.1.1 ANTS.CORE
ANTS.CORE is an essential module in the ANTS framework that
includes explicit support for Sessions, shared artefacts,
coordination control, security, and a seamless security model.

We have been strongly influenced by Multi-user Object Oriented
(MOO) architectures because of their extensible and generic
architecture. In a MOO system, “place” objects, which represent
discrete locations interconnected by portal objects, define the
topology of the space. These portal objects can establish any
graph-directed relationship between "places". In a MOO
architecture every static or dynamic entity is an object (Thing),
every object has a set of properties and a set of verbs, and
properties and verbs can be added or removed in runtime.

Like a MOO system, our shared session is represented by the
Place object, interconnected by portal objects (Links). The shared
artefacts are represented by Java Bean components dynamically
loaded by the ANTS container. Object properties are represented
in our model by the remote persistent property-based component,
and object verbs are Java Bean classes.

The Place represents the shared session containing users,
components, and links to other places. It provides methods in
order to send or subscribe to events in the current context. It also
supplies methods to get connected users and available links to
other places. Furthermore, it permits dynamic load of Java Bean
components to the shared context. Let us study the component’s
life cycle (Figure 2):

When the loadModels method is invoked in a Place, all Java Bean
components are activated (calling the init method) and classes are
dynamically loaded by the ANTSClassLoader. The
ANTSClassLoader retrieves classes from the public web directory
using the HTTP protocol. Finally, when the user leaves the shared
session, the destroy method is invoked in all JavaBean
components currently active in the container.

3.2.1.2 ANTS.AWS
ANTS.AWS is a server-side awareness infrastructure enabling the
triggering of a set of actuators in response to events produced in
the collaboration stream.

ANTS.AWS is consistently integrated with the component model
through XML descriptors included in packaged components. As
such, every descriptor contains the events that this component
triggers to the bus. Because this information is stored in the
repository during the deployment phase, external monitoring
application or AWS actuators can be aware of the information
produced by every component in the platform.

This service creates the base for sophisticated monitoring
applications, intelligent agents, and persistent actuators activated
by events received from the Notification system. Based on
existing CSCW Awareness systems [12], AWS includes an event
repository, a notification service, and an infrastructure to filter or
get information from events in the distributed bus.

AWS follows a Mediator design pattern with three important
entities: Sensors, the Mediator, and actuators. Sensors represent
any physical or software component producing events to the
Notification system. Actuators perform special tasks on response
to sensors; and the Mediator binds a sensor with one or more
actuators, and it is responsible for launching actuators in response
to events.

In relation to sensors, we consider two distinct types: event
sensors and time sensors. Event sensors are activated in response
to application events produced in the information bus. An event
sensor is created using a subscription following the constraint
filter language available in the Notification system.

Figure 2. Component’s life cycle.

On the other hand, time sensors are activated by the ANTS time
scheduler; we can create a time sensor for a specified date or even
set repetitive dates. The time scheduler notifies the awareness
service when a time sensor has been activated.

In a possible scenario, we could create a subscription telling that
we are interested in events produced by the user called “pedro”
(event sensor), and that we want to make them persistent
(actuator). This would log each event coming from user “pedro”
occurred in the environment. We could also create our own bots,
which would react to events specified by our subscription.

3.2.2 Technology Layer
First of all, such a problem requires a solid infrastructure
providing security, scalability, persistence, transactions and
performance. As we explained before, many existing systems rely
on non-distributed, single-threaded environments that limit their
applicability to more complex problems.

For this reason, we have chosen the Java 2 Enterprise Edition
(J2EE) standard as our preferred technology infrastructure. It
saves us from implementing infrastructure and system-specific
code and permits us to base on open specifications and
components. This technology makes our system vendor-
independent: we can choose any J2EE-compliant application
server or relational database.

Concerning message oriented middleware, we needed a
publish/subscribe notification service for our framework. Being
JMS (Java Message Service) a standard alternative, we were also
strongly interested in the new Elvin notification service. This
service has a very good performance and has been used for CSCW
purposes. As a result, we implemented a facade API that permits
us to choose between any JMS-compliant messaging solution and
Elvin. Event filtering is then obviously achieved in our
environment, directly accessing constraint filter languages
available in these messaging systems.

In order to connect to a specific messaging middleware,
developers only care about registered bus aliases in the
framework. We provide several sample bus aliases to different
middleware services. Depending on the selected middleware, we
can choose different transport layers, such as, raw multicast,
reliable multicast, encrypted Secure Socket Layer (SSL) streams,
ordered streams, according to our specific requirements.

Non-expert programmers can simply select SSL as the
communication channel (bus alias) and thus use an encrypted
communication channel. Applications requiring scalability for a
high number of users could then select the RMCAST alias.

4. MOVE ARCHITECTURE
In this section we will deal with MOVE’s collaborative
architecture. We will focus on the essential collaborative services
provided, like session and zone management, component model
and state propagation, coordination and consistency, and
awareness.

4.1 Session and Zone Management
In order to determine the environment structure, the place concept
is used. A place is a piece of virtual environment where users can
interact with each other and use the different shared artefacts

available. ANTS.CORE defines a session as a group of objects
associated with some common communications pattern and
supporting full-duplex multipoint communication among an
arbitrary number of connected application entities. This is
essentially what a place means in MOVE and any other MOO
environments. By using this philosophy, we identify session with
place.

In our case, the concept of “Places” is similar to the concept of
“Locales” in SPLINE [5]: places are the fundamental unit of
world composition, where each place represents a clearly
separated region of the virtual world, such as a room or an open
space, and can contain many virtual shared artefacts as well as
avatars and portal objects.

As far as portal objects is concerned, we can say they are used for
place linking purposes, thus providing a mechanism of transport
between different places. By using this zone partitioning
approach, we can define a session hierarchy where places can
contain subplaces.

4.2 Shared Artefacts and State Propagation
Another essential concept is the explicit support for shared
artefacts. Normally, users engage in a collaborative interaction
with other users in the shared context, or with accessible
collaborative components. These collaborative components –
usually called artefacts – range from synchronous to
asynchronous, depending on the interaction time frame. Explicit
support for creation and insertion of new artefacts represent a
differentiating factor between extensible and non-extensible
CSCW toolkits.

MOVE is based on a modular architecture for every component.
There are different types of components available, such as voting,
presenter, video, and document or multimedia tools. All of these
components follow the Model-View-Controller (MVC) paradigm.
Every client owns a local copy of the controller, which is the tool
used to modify the state of the component, and the view, which is
the representation of the component that is shown on the screen.

Our main aim is to design the system so that it is easily extensible
and reusable. To do so, every component has an XML descriptor
that contains all the necessary properties and information related
to events that can be thrown, besides the component’s classes and
any local resources. This new component is packaged using the
standard JAR format.

Place1 Place2

Link

Users and Components

Figure 3. Zone Partitioning in MOVE.

Packaged components are deployed in the ANTS server following
an automated process where these components are registered in
the component repository, using the XML descriptor, and
unpacked resources are copied to the Web container. Using this
mechanism makes integration of new components particularly
easy because it is like “importing” the new component (Tool) into
the system before it is ready to use.

One of the most difficult problems to solve when programming
distributed systems is maintaining the state of the components
among all other participants. In our case, this problem is
minimized and transparent to us by using ANTS CSCW
framework because it guarantees that the state will be propagated
to every each user in the same place that we are in. This way,
when developing new components for our system, this problem is
solved and we can concentrate our development efforts on other
aspects.

Another fact concerning state propagation is that persistence in
our system is maintained, as the natural behaviour for every
change in any property of the system is stored immediately to the
database by means of propagating the event to the server. Other
distributed virtual environments are not persistent in the sense that
they are transient due to the fact that information is stored among
all the clients. This may be an advantage sometimes but if all the
clients go down at the same time the information may be lost.

We have developed a set of shared artefacts which include a
voting tool, a presenter tool (both can be seen on Figure 4), a bars
tool, a document tool, a jukebox tool and a video tool, as well as
two tools for grabbing user’s attention (the hook and camera
tools). In these components, state propagation mechanisms
provided by ANTS CSCW framework have been used.

However, there are certain components that cannot use the state
propagation mechanisms that the framework provides us with.
One of the examples we have found is the avatar movement
component. It is clear that it is impossible to transmit every
positional event generated by the movement of a certain user to
other users in the same place. This would generate a huge amount
of event overhead over the network that even clients would be
unable to deal with. In this case, we have had to optimize this
component by implementing proximity event filters. As it is
known, one of the weak points of real-time 3D environments is
the enormous processing time required to render the 3D scene.
This is why when there are lots of users in the same place the cost
of rendering them is unacceptable for the client. To solve this
problem we have implemented a proximity event filtering
algorithm so as clients only receive the events of the avatars that
are in a certain threshold distance near them, as seen in Figure 5.

Finally, note that a personal profile management configuration
option has been added so that MOVE users can choose their own
virtual representation in our environment (avatar), as well as many
other properties that could be used in the future by an agent
system.

4.3 Coordination and Consistency
Another key issue in any CSCW framework is the explicit
software support for coordination policies. These policies can be
set programmatically or declaratively, and can be categorized in
roles for access control and concurrency control. The platform
should provide extension hooks to insert custom coordination
components that would then transparently interpose in normal
calls to a collaborative component.

In our case, and considering that MOVE was initially designed as
an educational collaborative virtual environment our access
control policies have been established by means of defining
basically two main roles: teacher and student. By using this
approach, the teacher role members have total access to
manipulating the state of the shared artefacts, whereas student role
members can only view the result of these state changes made by
teachers.

We are working in the development of a concurrency control
mechanism by using a token-based lock component, to avoid
more than one user manipulating any shared artefact. This
mechanism will also allow users to transport artefacts from one
place to another, thus assuring data consistency among sessions.

Presenter tool Voting tool

Avatar

Figure 4. MOVE snapshot showing the presenter and
voter artefacts and an avatar.

Figure 5. Only the avatars in user’s threshold distance
will be drawn.

4.4 Awareness
Awareness is an important feature of collaborative environments.
Awareness can be defined as an understanding of the activities of
others, which provides a context of your own activity. From our
perspective, an awareness platform should provide data
acquisition from the running environment. In this line we
emphasize the importance of a well-defined awareness model.

MOVE benefits from ANTS CSCW awareness and monitoring
services. In fact, ANTS.AWS is the base for the MOVE agent
infrastructure. In MOVE it is possible to program bots that
perform special tasks and that react to events produced in the
environment. As an example, we provide a guide bot that shows
the whole place to new-comer users and interacts with the shared
artefacts when a certain user moves besides it. More advanced
agents can be developed and in fact we are using them pervasively
to test our environment to simulate high user loads.

As seen in Figure 6, the bus is used for state propagation and for
awareness purposes. On the one hand, each time the user moves it
transmits its movements to the bus and they are received by the
rest of the clients in the shared context (1 and 2). On the other
hand, the monitoring service (Mediator) listens to the bus (3) and
launches specified actuators in response to filtered events. In this
case, the Mediator activates a guide bot that starts a sightseeing
tour over the place. As we can see, this network view of the
system complements Figure 1 in order to understand the overall
framework architecture.

Right now we have simple bots or agents running, yet in the
future these could be enhanced so as we could have advanced
guiding bots help bots or even bots that could collaborate and
interact with each other by using agent communication protocols.

Concerning logging and capture of events, the AWS mediator
system enables us to activate custom actuators in response to
specified events in the environment. With ANTS AWS we
include a persistent actuator that logs events to a relational
database. We also provide simple capture & replay actuators that
permit re-using data captured in the environment. We have yet
used these captured data in a data analysis system that employs
machine learning algorithms like clustering.

4.5 Performance issues
As a result of applying massive tests to the system, we have found
that the critical point resides in the client side and not in the
ANTS platform or server -side middleware.
In the server-side there is very small memory consumption and
processing power dedicated for every user connected to the

system. Furthermore, the notification system can handle massive
event flows without degradation and thus achieves enough
scalability under high loads.
In the client-side, the 3D visualization engine requires big
amounts of memory when it handles complex 3D simulations or
avatars. Moreover, when a very high number of events arrive to
the client, this has problems to transmit them to the visualization
engine and thus can lead to system degradation.
In order to solve that problem, we have implemented a distance-
based algorithm that discards events that are not located in a
specified radius around each user. This strongly limits
unnecessary processing in the client side and permits us to handle
a large number of concurrent users.
Obviously, the main performance problem in MOVE resides in
user movements that produce a high number of events. To further
refine the platform we are also considering the implementation of
dead-reckoning algorithms.
Nevertheless, although user simulations showed that the system
scales up smoothly with 200 users in a shared session, the Internet
2 project usage scenario provides better hardware and bandwidth
resources capable of sustaining a higher number of users.

5. CONCLUSIONS
MOVE is a Collaborative Virtual Environment constructed on top
of a component groupware framework. The VE fully benefits
from the underlying collaborative services provided by the ANTS
infrastructure.

While the tendency for modularity is rippling through VE
systems, we foresee interesting research in the development of
component frameworks offering collaborative services in a
seamless and extensible fashion to VE developers.

Our work aims to provide consistent groupware foundations to the
development of VEs and thus enabling further reuse and
interoperability in this complex domain.

One of the key aspects of this work is to provide extensibility at
all levels of the framework. It is thus possible to create new
components or artefacts, to develop new coordination
mechanisms, to interface with different middleware services and
propagation channels, and to develop new actuators for the
awareness service. This creates an interesting Playfield for
research in VEs by opening the system to third-party extensions
willing to solve specific problems in this wide domain.
Furthermore ANTS and MOVE are open source projects that
welcome contributions and extensions by commercial, educational
or research groups.

We are now developing new artefacts required by the educational
communities in archaeological, medical and pedagogical
applications involved in the Internet2 Catalonian project. The use
of MOVE in a real setting will give us interesting feedback to
create new awareness actuators and bots and to further improve
interaction capabilities in the MOVE environment

As future works, we plan to further improve the coordination and
consistency control mechanisms, to test different propagation
channels and to apply data-analysis techniques to better
understand collaboration flows in the running environment.

Figure 6. MOVE components and bots.

We also foresee interesting research in the awareness extensions
to the MOVE Virtual environment. The provision of advanced
awareness indicators and the extension of the agent system can
lead to new interesting scenarios in VEs.

6. ACKNOWLEDGEMENTS
This project has been partially funded by the Generalitat de
Catalunya' Internet2 Advanced Telecommunications project and
European Union ITCOLE project.

7. REFERENCES
[1] Broll, W. Populating the Internet: Supporting Multiple Users

and Shared Applications with VRML. ACM SIGGRAPH:
Proceedings of the VRML ’97 Symposium. New York, 1997,
87-94.

[2] Dachselt, R.; Hinz, M.; Meißner, K.. CONTIGRA: An
XML-Based Architecture for Component-Oriented 3D
Applications. Proceedings of the ACM Web3D 2002
Symposium, Tempe (USA), 24.-28.

[3] DIVE Homepage. http://www.sics.se/dive.

[4] Garcia P, Skarmeta A., Rallo R., ANTS: A new
Collaborative Learning Framework, European Conference on
Computer Supported Collaborative Learning. 2001.

[5] Greenhalgh, C., Purbrick, J and Snowdon, D. Inside
MASSIVE-3: Flexible Support for Data Consistency and
World Structuring. Proceedings of the CVE 2000
Symposium, ACM, 2000, 119-127

[6] H-Anim Humanoid Working Group. http://www.h-anim.org

[7] Hofte, G. Henri ter. Working Apart Together: Foundations
for Component Groupware. Telematica Instituut, Enschede,
The Netherlands, 1997, 288.

[8] Marsic, I. DISCIPLE: A Framework for Multimodal
Collaboration in Heterogeneous Environments. ACM Comp.
Surveys, vol 31, no. 2es, 1999.

[9] Mitsubishi Electric Research Laboratories. Scalable Platform
for Large Interactive Networked Environments (SPLINE).
http://www.merl.com/projects/spline/.

[10] NPSNET Research Group.
http://www.movesinstitute.org/~npsnet/index.html.

[11] Oliveira, M., Crowcroft, J. and Slater, M. Component
Framework Infrastructure for Virtual Environments.
Proceedings of the CVE 2000 Symposium. ACM, 2000, 139-
146.

[12] Prinz, W. NESSIE: An Awareness Environment for
Cooperative Settings. Proceedings of 6th European
Conference on Computer Supported Cooperative Work.
Kluwer Academic Publishers, 1999, 391-410.

[13] Roseman, M. and Greenberg, S. Building Real-time
Groupware with Groupkit, a Groupware Toolkit. ACM
Transactions on Computer-Human Interaction, 3(1):66—
106, March 1996.

[14] Rudolph, M. Jamal:Components Frameworks and
Extensibility.
http://www.web3d.org/TaskGroups/x3d/lucidActual/ja
mal/JamalImpl.html

[15] Tower Project. http://tower.gmd.de.

[16] U.S. Department of Defense (DOD). Distributed Interactive
Simulation, IEEE Standard 1278. 1993.

[17] VRML 97 External Authoring Interface.
http://www.vrml.org/WorkingGroups/vrml-
eai/Specification/

[18] Watsen, K.; Zyda, M. Bamboo, A Portable system for
Dynamically Extensible, Real-Time, Networked Virtual
Environments. Proceedings of the IEEE Virtual Reality
Annual International Symposium (VRAIS'98), Atlanta,
Georgia, 1998, pp 252-259.

[19] ANTS MOVE. http://ants.etse.urv.es/move/

