
IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 3, AUGUST 2020 171

A Low-Cost Multicomputer
for Teaching Environments

Carles Aliagas , Montse García-Famoso, Roc Meseguer , Member, IEEE,

Pere Millán , and Carlos Molina

Abstract— We propose a teaching resource that uses Hard-
Kernel boards to build an MPI server with 256 cores. Although
this system has a relatively low performance, the aim is to
provide access to hundreds of cores for carrying out scalability
analyses, while obtaining a good trade-off between performance,
price, and energy consumption. Here, we give details about
the implementation of this system at both the hardware and
software levels. We also explain how it was used to teach parallel
programming in a university degree course, and discuss the
teachers’ and students’ comments about using this new system.

Index Terms— Parallel machines, multicore processing,
multiprocessor interconnection, low-power systems, educational
activities.

I. INTRODUCTION

TO ACQUIRE parallel programming and computer skills
in the Degree in Computer Engineering it is necessary to

practice and have access to parallel and distributed computer
systems. The most common standards are OpenMP, MPI,
and CUDA. To be able to use these, it is essential to have
specific hardware for doing the appropriate exercises and for
practicing. These systems tend to be expensive and the budget
often limits the number of processors available in a classroom.
Although university departments have high-performance sys-
tems for research, it is difficult to access these systems for
teaching, and therefore low-performance systems are generally
used.

In the subject Parallel and Mass Computing in the fourth
year of the Degree in Computer Engineering of the University
Rovira i Virgili, the subject of this study, a queue system with
24/7 access (24 h a day, 7 days/week) is used in dedicated
servers. Therefore, students always have access to the teaching
servers, both during teaching time and outside class time.

Manuscript received May 23, 2020; accepted June 2, 2020. Date of
publication July 9, 2020; date of current version August 5, 2020. (Spanish
version received November 19, 2019; revised January 5, 2020; accepted
February 7, 2020). This work was supported in part by the Government of
Spain under Contract TIN2016-77836-C2-1-R, Contract TIN2016-77836-C2-
2-R, Contract TIN2016-75344-R, and Contract DPI2016-77415-R and in part
by the Government of Catalonia as Consolidated Research Groups under
Grant 2017-SGR-688 and Grant 2017-SGR-990. (Corresponding author:
Carles Aliagas.)

Carles Aliagas, Montse García-Famoso, Pere Millán, and Carlos Molina are
with the Departament d’Enginyeria Informàtica i Matemàtiques, Universitat
Rovira i Virgili, 43007 Tarragona, Spain (e-mail: carles.aliagas@urv.cat;
montse.garcia@urv.cat; pere.millan@urv.cat; carlos.molina@urv.cat).

Roc Meseguer is with the Departament d’Arquitectura de Computa-
dors, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain (e-mail:
meseguer@ac.upc.edu).

There exists a Spanish version of this article available at
http://rita.det.uvigo.es/VAEPRITA/V8N3/A6.pdf

Digital Object Identifier 10.1109/RITA.2020.3008098

In particular, selected practice exercises are performed
in shared memory machines (SM) and distributed memory
machines (DM). In the first case (SM), programming is
performed with the OpenMP standard with a machine with
two Xeon E5-2660 processors at 2.2 GHz, each of which
have eight cores with multithreading capacity (two threads
per core). Therefore, up to 32 processes can be executed
simultaneously. In the second case (DM), the parallel pro-
gramming MPI model is studied with an 8-node system with
two Opteron 2210 processors at 1.8 GHz, each of which
has two cores with multithreading capacity (two threads per
core). Therefore, again, up to 32 processes can be executed
simultaneously.

In general, in OpenMP environments with shared memory
systems, it is relatively easy to get systems of 16–32 cores for
a price that can range from 5,000 e to 10,000 e. Similarly,
a CUDA environment is also relatively affordable. A high-end
graphics card can be purchased for a price between 1,000 e
and 2,000 e and can be incorporated into a server to perform
the necessary CUDA exercises. The same server could even be
used for OpenMP and CUDA approaches. On the other hand,
MPI programming environments, being distributed memory
systems, make it possible to study the scalability of a problem
better because they provide access to a much larger number of
nodes, processors, and cores. However, it is too expensive to
acquire systems that exceed four or eight nodes, and therefore,
scalability studies remain within the theoretical scope.

A solution for improving scalability is to use computer
rooms (or laboratories) and thereby obtain a number of nodes
greater than 30 computers. This solution has a serious prob-
lem: exclusivity. Although the computers could be reserved for
several hours, they would have to be left after that time so that
other subjects could use them. With this restriction, students
would not be able to do the exercises outside class hours, and
therefore the complexity of the exercises would have to be
significantly reduced. Moreover, the interconnection network
used by the computer rooms would be shared with other
systems of the educational center, which would undoubtedly
significantly damage the MPI communication of the exer-
cises to be performed. This would make it very complex to
obtain invariable execution times according to the network
load. Given this problem, it is unreliable to study speedup
and scalability on nondedicated and nonexclusive networked
computers.

Our goal is to build a system for an MPI programming envi-
ronment with exclusive dedication, of more than 250 cores,

1932-8540 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2645-5444
https://orcid.org/0000-0002-9414-646X
https://orcid.org/0000-0002-4132-7099

172 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 3, AUGUST 2020

which is relatively economical (between 5,000e and 6,000e).
In addition, this resource will also follow the current trend
of working with systems with a good relationship between
performance and low energy consumption. Therefore, apart
from learning to use the MPI standard, students must adapt to
the resources offered by the system in terms of computing
power, RAM, and communication network. They can also
perform scalability studies by varying the number of processes
from a few units to hundreds of units.

This work is an expanded and revised version of the article
“Minimulticomputador de Bajo Coste” [1] published in the
conference XXV Jornadas sobre la Enseñanza Universitaria de
la Informática (JENUI 2019) that was held in Murcia (Spain)
in July 2019.

The main differences between the articles are the following:

• Title, Abstract, and Section I (Introduction) have been
improved according to the new material included.

• Section II Related Work has been added, and new bibli-
ographic references have been included and analyzed

• Section III (Proposal:Hardware) and Section IV (Pro-
posal:Software) have been reorganized, thus improving
the description of the proposal, both in terms of the
hardware and software.

• Section V (Proposal:Verification) has been reorganized
to focus on verifying the system, adding a better and
deeper analysis of the consumption, temperature and per-
formance potential of the proposed solution. In addition,
we consider a system with eight nodes instead of the
4-node system initially assumed for distributed memory
machines, and show the updated results and analysis.

• Section VI (Use of the System in the Context of the
Subject) is a totally new section. It shows how the
proposed low-power system was used in a parallel pro-
gramming subject. The model for evaluating the subject
is described and the performance of the system is veri-
fied with initially sequential algorithms that the students
parallelize in their practical exercises. These algorithms
were executed and analyzed in all the systems considered
in this work (Xeon, Opteron, and Odroid).

• Section VII (Added Value of the New System) is also a
totally new section. It describes the added value (quantita-
tively and qualitatively)of the low-cost computing system
proposed in this work for both the students and teachers
of the subject.

• Section VIII (Conclusions) has been also improved
according to the new material included.

II. RELATED WORK

One of the first approaches, developed in the late 1990s,
for implementing parallel systems in teaching environments
was to connect personal computers through a local area
network. Chhabra and Singh [2] were among the first to
apply this approach, proposing the combined use of personal
computers available on the intranet of university campuses.
From there, many universities used this approach in their
parallel programming subjects. For example, Apon et al. [3]
describes several experiences of using computer clusters

(based on PCs/Workstations) in several universities, depending
on the specific objectives of the subjects taught (computer
architecture, parallel processing, parallel systems, etc.). Even
very low-cost approaches with a few personal computers
(barely four) have been proposed, such as the system proposed
by Xu and Su [4] for the Shanghai University of Engineering
Science. In general, all these systems focus on working on
parallel processing in distributed memory environments, but in
some cases, the systems can also be applied to shared memory
environments.

A decade later, this type of environment is still the one
used to teach subjects that introduce students to parallel
programming, now using GPU boards (Graphics Processing
Units) together with commercial general-purpose proces-
sors. Giménez [5] describes his experience in the course
“Introduction to Parallel Programming” of the Department
of Computing and Systems of the University of Murcia,
focusing on parallel programming environments and tools such
as OpenMP, MPI, and CUDA. The author uses a cluster
of six nodes with a total of 64 cores and with GPU and
Xeon Phi cards for each node (ten GPUs and two Xeon Phi).
Santamaría et al. [6], in the course of Computer Architecture
of the Telecommunications Engineering Department of the
University of Jaén, use computers with NVIDIA GeForce
8800 GT GPU boards, as well as the CUDA 2.3 toolkit,
but their experience is also suitable to other parallelization
alternatives (MPI, OpenMP).

An attractive alternative, that contrasts with physical envi-
ronments, is the cluster systems implemented in the cloud.
Ivica et al. [7] presented StarHPC, an environment developed
by MIT for learning algorithms and parallel programming that
provides a virtual machine image configured for parallel pro-
gramming in OpenMP and OpenMPI technologies. MIT also
developed the StarCluster [8] project, which offers a dynamic
cluster hosted in the Amazon Elastic Cloud Computing (EC2).
This project makes it possible to use distributed and parallel
applications and systems. Similarly, Gomez-Folgar et al. [9]
proposed using cloud computing for learning MPI, in this case,
based on CloudStack. The advantage of these types of systems
is that they provide great flexibility and high availability.
In addition, educational institutions can reduce costs by elim-
inating the need for dedicated servers or storage and cooling
systems as well as minimize the system administrators’ tasks.

The use of low-cost systems for improving some features
of university classrooms and laboratories that offer some type
of engineering education is an increasingly common practice.
Due to the lack of funding, teachers tend to sharpen their
ingenuity. In this sense, and without being exhaustive, there
are a lot of examples that follow this approach. For example,
Prieto and Mendoza [10], from the Department of Electronics
of the University of Alcalá, developed a robotic platform that
facilitates learning without the need for face-to-face laborato-
ries, by using low-cost devices and boards developed in the
actual department. Rodriguez et al. [11] used Raspberry Pi
boards in the teaching classrooms of the National University of
La Matanza (Buenos Aires) to implement a system of network
access points. Students can answer questionnaires about the
subject from their mobile devices without the need for Internet

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

ALIAGAS et al.: LOW-COST MULTICOMPUTER FOR TEACHING ENVIRONMENTS 173

access. More focused on solutions for Computer Engineering
subjects, Catalán Cantero and Blesa Gascón [12] from the
Department of Computer Science and Systems Engineering,
University of Zaragoza, proposed a programming model for
Raspberry Pi. To perform this, they connected a desktop
computer and two Raspberry Pi boards through the Internet,
to show how these boards work.

Ortega et al. [13], from the Department of Computer
Science of the University of Almeria, used Raspberry Pi
and Arduino boards to demonstrate the potential of this type
of low-cost system and, above all, to motivate and awaken
the students’ interest in the subject. Therefore, they propose
experiments such as activating a relay with a phone call,
building a piano with fruit, or even setting up a cluster
with 4 Raspberry Pi. More recently, Johnston et al. [14]
discussed the potential of SBC-based clusters (Single Board
Computer) as an alternative to traditional clusters in terms of
cost and consumption. However, these proposals are not aimed
at developing or analyzing applications based on parallel
programming.

Several proposals focus on parallel MPI programming and
the use of low-cost systems. Pfalzgraf and Driscoll [15],
intending to obtain a low-cost cluster (less than 1,000 US$)
for training in high-performance computing (HPC, High Per-
formance Computing), built a system of 25 nodes (Raspberry
Pi Model B) interconnected through an Ethernet switch. The
system is managed by free software (open source), which
means it has an affordable final cost. To test the system they
used three Python + MPI codes with basic linear algebra
operations, varying the n size of the problem (vector size,
matrices). The results show that it has a very similar behavior
toward much more expensive HPC systems.

Similarly, Wina Rachmawan et al. [16] used a low-cost
cluster consisting of 32 PandaBoard ES, two switches, and
two adapted power supplies, with an OpenMPI communica-
tion library. The novelty, in this case, is that students also
participate in designing and assembling the hardware, and not
only in the programming. The HPC training is organized in
seven courses, and the surveys carried out by the students
show their preferences for the practical training using this
cluster. A problematic point of these low-cost systems for HPC
training, which is not reflected in most articles, is the config-
uration of the different hardware and software components.
Doucet and Zhang [17] described in detail the assembly and
configuration of the hardware, software, and communications
of an educational cluster with 20 Raspberry Pi.

Many technical articles, such as Cloutier et al. [18],
Aroca and Gonçalve [19], and Göddeke et al. [20], although
they are not directly associated with teaching experiences but
rather with parallel performance, have studied the feasibility
of assembling a cluster using SoC (System on Chip) systems.
These studies compare performance, energy consumption, and
cost, but as they are based mainly on 32-bit ARM processors,
which have low memory (from 256 KB to 1 GB), the perfor-
mance they provide is quite low. Although they have a low cost
and consume little energy, by establishing a performance/cost
and performance/energy relationship, as Cloutier et al. [18]
did, they do not surpass the relationship offered by traditional

systems based on Xeon and Opteron high-performance proces-
sors. Aroca and Gonçalves [19] concluded that ARM systems
are energy efficient when they run applications based on
database services such as MySQL, but they are not energy
efficient with applications that require floating-point calcula-
tions. Finally, Göddeke et al. [20] compared the execution
of HPC applications in two clusters, one with 32 nodes
with Xeon X5550 processors and one with 96 nodes with
ARM Cortex-A9 processors. They conclude that, despite the
low consumption of the ARM processors, these require more
runtime as they have less computing power, and are therefore
not competitive at the energy level compared to Xeon proces-
sors. In addition, they concluded that more than twice the
floating-point calculation power would be necessary for the
system to start being competitive in the performance/energy
ratio.

In this work we use processors (ARM Cortex-A53) with
more computing power and, going one step further, we aim
to build a system of several tens of nodes that would allow
students to analyze the scalability of MPI development envi-
ronments at a reasonable price. We did not consider the
assembly of the SoC cluster system until the market offered
systems with enough power, RAM, and connectivity to obtain
a better performance/cost ratio. Therefore, we have taken
advantage of the most recent developments in low-cost boards,
resulting in greater benefits than those obtained in related
works. We use more powerful Odroid boards, with twice the
RAM (2 GB), with eMMC memory (faster than other SD
cards) and Gigabit Ethernet connections (10 times faster than
Raspberry Fast Ethernet), connected to two Gigabit switches.
The four cores of each Odroid (more powerful than those of
the Raspberry Pi) allow students to perform scalability tests
with up to 256 processes, which is generally not possible in
teaching-related studies.

III. PROPOSAL: HARDWARE ASPECTS

A. Alternatives

Our proposal focuses on low-power processor systems with
a reasonable calculation capacity that can run a complete
operating system (OS) from the beginning. Although personal
computers can do this, we discarded this possibility because
we need a system that can be linked easily with others, which
occupies the minimum possible space and that has low energy
consumption. Similarly, embedded systems were discarded
because they cannot be easily used to run a full Linux OS.
Therefore, we decided to analyze SoCs, which have similar
features to those based on Raspberry Pi [21].

In the following, we describe the different alternatives
considered (additional details can be found in Table I) for
selecting a complete low-cost processor system:

• Raspberry Pi-3B: This is the third version of the original
design and the most popular in SoC systems. It has a clear
design and high performance; however, it does not have
Gigabit Ethernet and only provides low RAM capacity.
We, therefore, discarded this possibility.

• Banana Pi-M2-Berry: This is a similar alternative and has
Gigabit Ethernet, but it provides less computing power.

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

174 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 3, AUGUST 2020

TABLE I

COMPARISON OF THE SOC CONSIDERED. RELEVANT TECHNICAL FEATURES

Fig. 1. Comparison of different SoC boards (HardKernel® manufacturer source).

• Banana Pi-M3: This is a better option than M2-Berry as it
doubles the number of cores, increases memory capacity,
and has faster eMMC storage; however, it has a higher
price and is not powerful enough.

• Orange Pi-plus-2E: This option has a reasonable price
and stands out for improving memory, storage, and com-
munication, but it has low computing power.

• Odroid-XU4: This is the most powerful system with eight
cores (4 Cortex A15 2,1 GHz + 4 cores A7 1,5 GHz) but
unfortunately it has a high price.

• Odroid-C1+: This system competes directly with the
Raspberry Pi-3B. It is a good option, but the same
manufacturer offers a more powerful top model.

• Odroid-C2 [22]: This system brings together all the
advantages of the previous systems at a reasonable price.
It improves memory, communication, storage, and com-
puting power.

B. Selected Board: Odroid-C2

We selected Odroid-C2 to build the system. This board
satisfies the minimum criteria for assembling the system:
ARM processor with enough performance (four cores per
board), enough RAM (2 GB) and acceptable bandwidth
(Gigabit Ethernet). Figure 1 compares the performance of
the chosen board with the other alternatives: a cheaper board
(Odroid-C1 +), a more expensive board (Odroid-XU4) and a
very popular board in the market (Raspberry Pi-3B). These
values were obtained from the website of the manufacturer
HardKernel® [22] and show the CPU performance (Figure 1a),
the transfer speed of storage access (Figure 1b), and the speed
of communication transfer (Figure 1c).

It can be seen that the chosen board’s performance is clearly
better than the rest, with the exception of the XU4 board,
which, although it has better performance, is more than twice

the price. The selected board has a price of 46 US$ with a
very good performance/price ratio. Its features are:

• CPU: Amlogic ARM® Cortex®-A53 (ARMv8) 1.5 GHz
with four cores.

• GPU: Mali-450 (3 Pixel processors + 2 Vertex shader
processors).

• RAM: 2 GByte DDR3.
• Gigabit-Ethernet.
• Monitor connection: HDMI 2.0 4K/60Hz.
• VPU: H.265 4K/60FPS y H.264 4K/30FPS.
• 40 pin GPIOs + 7 pin I2S.
• Connection to eMMC5.0 HS400 cards and MicroSD

UHS-1 SDR50 card reader.
• 4 USB 2.0 connectors and 1 USB OTG (with power).
• Infrared receiver (IR).
• Ubuntu 16.04 or Android 6.0 Marshmallow based on

Kernel 3.14LTS.
It has many interesting features, especially the computing

power of ARMv8 (3 times more powerful than Raspberry Pi3),
the 2 GB of RAM (2 times higher), the access speed to eMMC
storage (120 MB/s), and the network transfer speed of the
Gigabit-Ethernet (900 Mbit/s). Perhaps, the only drawback of
this board is that it does not have serial wireless connectivity,
since it comes without Wi-Fi or Bluetooth; however, it is
possible to add optional add-ons in its USB ports that fulfill
this function. Nevertheless, our aim is to connect all the boards
with cables.

C. Communication Network

The interconnection network is one of the most important
factors that define the performance of parallel distributed
memory algorithms. In this system, we chose a solution to
obtain the maximum performance of the boards’ commu-
nication cards without increasing the cost. Although com-
munication via USB can offer good performance, in our

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

ALIAGAS et al.: LOW-COST MULTICOMPUTER FOR TEACHING ENVIRONMENTS 175

Fig. 2. Operating Odroid-C2 boards.

case it is limited by the USB 2.0 standard, which has a
maximum speed of 480 Mbps (the effective speed of a USB 2.0
Gigabit-Ethernet device does not exceed 300 Mbps). Given this
limitation, it was decided to communicate the boards through
the built-in Gigabit-Ethernet, thus obtaining effective speeds
close to 900 Mbps.

The boards were interconnected by dedicated switches
(two Zyxel model GS1900-48 switches, which is an appro-
priate and economical solution).

Their main features are the following:
• Switching capacity (Gbps): 100
• Forwarding rate (Mpps): 74
• Packet buffer (byte): 1.5 M
• MAC address table: 8 K
• Jumbo frame (byte): 9 K

D. Board Assembly

The proposed multicomputer consists of: 64 Odroid-C2 with
8 GB of eMMC storage each, eight power supplies with
ten USB outputs each of the sources, two Zyxel switches,
and category 5E Ethernet cables. As each Odroid board has
4 cores, it is possible to obtain a system with 256 cores in
total.

Assembling the multicomputer consisted of physically join-
ing an Odroid board to another board next to it and connecting
each of the Odroid boards to a switch port (Figure 2). As the
switches have 48 ports, 32 cables were used to connect the
Odroids and an additional cable to connect the switches to
each other. An additional Odroid board was used as the
manager node to serve as a frontend of the multicomputer.
This Odroid makes it possible to launch parallel applications
in the computing nodes and provides network access to them.
This node has the same components as the other nodes as well
as a keyboard, mouse, HDMI connection to the screen, and
Gibagit Ethernet via USB to gain access to the multicomputer
from the outside.

IV. PROPOSAL: SOFTWARE ASPECTS

A. Operating System and Services of the Manager Node

For the proposed multicomputer to run parallel applications,
the Linux OS provided by the manufacturer (Ubuntu 16.4)
can be written directly on eMMC or MicroSD memory cards.
This makes it possible to use a package manager and therefore
be able to keep the software updated and install the required
packages in a very simple way [23].

The installed Linux system comes with the standard Ubuntu
software for desktop machines. This includes a service boot
manager and a window manager. We also added the following
services: SSH server (openSSH), name server and DHCP
server (dnsmasq), port replication, tunneling, and firewall
(iptables), as well as the network file server (NFS).

The OpenMPI package was also installed in order to run
parallel programs. We use the OpenMPI command mpicc
to compile and the command mpirun to execute. This last
command has an option that makes it possible to indicate
the addresses of the nodes that will be part of the parallel
execution. Thus, a text file is created with the 64 internal DNS
names of the nodes.

B. Operating System and Services of the Computation Nodes

The Linux Ubuntu 16.04 OS provided by the manufacturer
was also installed in the computing nodes; however, in this
case, the majority of packages that were not needed for
the parallel execution of applications were eliminated, thus
leaving a minimum installation that does not consume a lot
of the system’s resources. We kept the remote access service
(SSH), remote disk access client (NFS), and the MPI execution
package (OpenMPI). Any package that occupies considerable
disk space was uninstalled, including the Gnome desktop.

In order to manage the nodes, users with privileges (root
and sudoers) have been allowed to execute commands on the
nodes from the frontend without having to enter the privileged
user’s password each time. This was done by generating an
RSA key (ssh-keygen) and subsequently distributing the
public key to the nodes so that it can be accessed without
requesting the password (ssh-copy-id).

An entry in the file system assembly (fstab) was added
to the nodes so that, through the NFS service, they can access
the user directory of the frontend node (/home) and share
it among all of the nodes. Therefore, in parallel execution,
the cost of transmission of the compiled binary MPI codes
is not required. This transfer is carried out by NFS, and this
protocol is used to optimize the distribution of the code.

V. PROPOSAL: VERIFICATION

A. Temperature

To verify the correctness of the system and that there is
appropriate passive cooling, stress tests were carried out with
the package stress [24]. We found that the temperature of
the CPU with the inactive nodes was around 41 ◦C and that,
after a period of CPU stress, temperatures stabilized around
60 ◦C (some nodes around 56 ◦C and others around 62 ◦C).

Given the physical distribution of the boards, it is observed
that if they are stacked horizontally, the heat of the lower
boards affects the upper boards, so they reach temperatures
above 75 ◦C. Although this value is not a problem in the sys-
tem (the manufacturer’s limit is above 80 ◦C), we observed that
by turning the Odroid stack 90◦, and keeping it in a vertical
distribution (as in Figure 2), the temperatures were drastically
reduced, and they stabilized around 60 ◦C. Undoubtedly, this
is because the heat generated is dissipated by convection and
does not affect neighboring boards so much. For instance,

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

176 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 3, AUGUST 2020

Fig. 3. Odroid-C2 temperature with stress tests.

TABLE II

ENERGY CONSUMPTION OF THE ANALYZED SERVERS

Figure 3 shows an outer board with a maximum temperature
in stress kept at 55.7 ◦C.

B. Energy Consumption

In order to verify the consumption of the new Odroid
Distributed Memory (MD-Odroid) system, we compared it
with the rest of the existing systems (discussed in Section I),
that is, the Opteron Distributed Memory (MD-Opteron) system
and the Xeon Shared Memory system (MC-Xeon). Therefore,
energy consumption is measured with an ammeter that has
a power supply from a UPS (Uninterruptible Power Supply).
Two operation modes were considered: idle and full. The first
case would be the consumption of the three servers doing
nothing, while the second case would be the consumption of
the three servers at full capacity when they are executing the
stress program in each of the three systems.

Table II details the power consumption of each of the
three servers, considering the two operating modes described
earlier. The individual results of one of the nodes of each
system, and the overall results considering all the nodes of
the system are shown. In addition, and to be more fair with
the comparison, we included the consumption introduced by
the different switches needed by each server (two switches
for the MD-Odroid system, one switch for the MD-Opteron
system, and no switch in the case of the MC-Xeon system).

As can be seen, the MD-Odroid server has the lowest energy
consumption when it is at full capacity. It has just 72% of the
consumption of the MC-Xeon server and 20% of the total
server consumption of the MD-Opteron server. In fact, since
only those nodes that are being used will have an increase
in consumption (the rest will remain “idle”), the MD-Odroid
system option offers an excellent consumption/performance
ratio. This analysis reaffirms the viability of this new system
in terms of consumption.

C. MPI Code Selection

We used three different types of code to verify the sys-
tem’s performance, three different types of codes are selected:

(1) product of sparse matrices, (2) search for an optimal path of
the traveling salesman, and (3) computation of clusters based
on the k-means algorithm.

The first problem (MD×MD) calculates two matrix prod-
ucts: (1) dense matrix per dispersed matrix, and (2) the product
of two dispersed matrices. The exercise does not have many
parallelism problems as it is enough to distribute fragments
of the matrices between the processes to finally collect the
results and compact them in the resulting matrix. The size of
the matrices is 5.000 × 5.000 items.

The second problem is the “traveling salesman problem”
(TSP-greedy) in which the salesman must visit a series of
points linked by roads, so that he visits them all only once
with the minimum possible travel. In this case, a fairly good
solution is obtained, but not the optimal solution. It is based
on a “greedy” selection of all possible beginnings. The parallel
solution involves distributing the possible beginnings, and
finally choosing the minimum path that one of the processes
has computed. The number of places to visit for this example
is 3,000.

Finally, the k-means algorithm tries to create groups
of randomly generated elements. It searches iteratively for
k-centroids of the elements to be processed, until each of
them stabilizes and is assigned to a centroid. The centroids
are computed from the average of the elements that belong
to them. In this case, there is a recurrence in each iteration,
which requires synchronizing the processes to correctly update
the centroids. In this exercise, 200 centroids are searched from
400,000 elements.

D. Sequential Performance and Cost

To compare the sequential performance of the algorithms
and systems discussed in the previous sections, Figure 4a
shows the normalized execution time for creating a single
process in each system. The machine with Xeon proces-
sors is the fastest: up to 2.5 times faster than the machine
with Opteron processors, and up to 7 times faster than an
ARM processor on an Odroid-C2 board.

However, considering the price of a single node of each
system, the cost of executing these exercises is significantly
different. An Odroid-C2 is about 10 times better than a system
with a Xeon processor, and about 20 times better than a system
with an Opteron processor. Figure 4b shows these costs by
calculating them as the execution time multiplied by the price1

unit of a node, which is equivalent to the cost calculated
as price divided by performance (as it will be seen in the
figures in the next section).

E. Parallel Performance and Cost

The above codes were parallelized with the MPI standard
and were executed using a Slurm queue system (to guarantee
exclusivity) on the different machines available for the subject.
We only show those that help us assess the differences
with MPI: one is a shared memory server with two Intel

1A price of 2,000e is assumed for Xeon and Opteron processor systems.
In contrast, the price of an Odroid-C2 board is about 50e.

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

ALIAGAS et al.: LOW-COST MULTICOMPUTER FOR TEACHING ENVIRONMENTS 177

Fig. 4. Cost and performance of sequential execution of verification algorithms.

Fig. 5. Evolution of speedup and scalability of verification algorithms in the considered systems.

Xeon E5-2660 processors at 2.2 GHz and 32 GB of RAM
(MC-Xeon); one is eight servers that make a cluster of
distributed memory, with two Opteron 2210 processors at
1.8 GHz and 4 GB of RAM each (MD-Opteron); and finally,
the system object of this work, which is made up of
64 Odroid-C2 boards with an ARM Cortex A-53 processor
at 1.5 GHz and 2 GB of RAM each (MD-Odroid).

Figure 5 shows the evolution of speedup as more processes
are created in parallel execution. We present two execu-
tions with different process mappings for MD-Opteron and
MD-Odroid. MD-OpteronM and MD-OdroidM are equivalent
to a mapping considering problems that are “Memory-Bound,”
where there are many memory accesses by the algorithm and
the aim is that a process would have all the memory of a node
for the process. Thus, for MD-OpteronM an execution of eight
processes will assign one process to each node, thus occupying
the eight nodes. In MD-OdroidM, each board executes a
single process, from the execution of two processes up to
64 processes (two and four processes per board are already
assigned for 128 and 256). MD-OpteronC and MD-OdroidC
are equivalent to a mapping designed for “CPU-Bound” prob-
lems, where there are not too many memory accesses and the
bottleneck is due to the use of the CPU. In this case, an attempt
is made to assign the maximum number of processes to each
node, so that the processes of a node communicate through
shared memory without the need to use the interconnection
network. For example, for four processes, only one node will
be used and, as the number of processes increases, more nodes
are used.

In MD×MD (Figure 5a), the machines have a similar
evolution but do not achieve a high speedup. The decrease in
efficiency is mainly because it is a memory-bound algorithm,
and it is necessary to communicate the results of the multi-
plication to the collecting node. This highlights the loss of
performance in 128 and 256 of the MD-OdroidM system, and
the low performance obtained in the MD-OdroidC version, due
to the competition for the memory that is produced on each
board because of the four processes assigned.

With the TSP-greedy algorithm (Figure 5b) we see a similar
evolution but with more efficient speedup. This algorithm uses
the CPU intensively and has a greater degree of parallelism.
Communication is only needed at the end of the execution
to decide which process has found the best path and then
transmit it to the collecting node. The two types of mapping
obtain equivalent results.

Finally, we observed that the k-means algorithm (Figure 5c)
behaves in a similar way in MC-Xeon and in MD-Opteron
(M and C), but it has a significant loss of performance in
the MD-Odroid systems (M and C). In this case, synchro-
nization is needed in each iteration to gather and distribute
the new centroids. Here we can see how, when there are
multiprocessors in MD-OpteronC and MC-Xeon in which
some processes share memory, the communication between
them does not use the network. However, the MD-Odroid
(M and C) uses the interconnection network more to com-
municate the centroids, resulting in a significant loss of per-
formance. This highlights the initial benefit (up to 4 processes)
of MD-OdroidC over MD-OdroidM since the communication,

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

178 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 3, AUGUST 2020

Fig. 6. Evolution of the absolute speedup of the verification algorithms in the considered systems.

Fig. 7. Absolute price/speedup evolution of the algorithms when using more nodes in the considered systems.

in this case, is also internal to the node, without using the
interconnection network.

In any case, it can be observed that, when working with
more nodes, the problems and delays produced by the nec-
essary communication between the processes of a parallel
algorithm are evident. This behavior is beneficial from an
educational point of view because it gives students a more
realistic experience.

Figure 6 shows the absolute speedup of the three machines
(taking the slowest as baseline). It is clear that the shared
memory machine, MC-Xeon, has the best performance, given
the computing power of each core of the system, followed by
the distributed memory system, MD-Opteron, and finally by
the MD-Odroid system. However, when we add the price to
the cost function (Figure 7), calculating the cost in money with
respect to the absolute performance offered by each system,
the results change dramatically.

The MC-Xeon system has the best performance due to
its computation power and internal communication, and thus
has a very good price/performance ratio, especially for exe-
cutions of 8 to 16 processes. MD-Opteron systems, in any
configuration and mapping, have the highest performance cost
of the three. There is no combination which indicates, with
respect to the others, that it is an optimal option in terms
of the price/performance ratio. For memory-bound mappings
(MD-OpteronM) the situation is even worse, because the price
of the system to execute eight processes includes the cost of
the eight nodes.

Finally, MD-Odroid systems (M and C) are the ones
that offer the best price/performance ratio compared to the
others mainly due to its low cost. The fact of increasing
the cost, adding boards every time you want to run more
processes, makes it (in any configuration and mapping) better

than the rest by a large difference. These systems have a
price/performance ratio equivalent to the other two only for
mappings of 4 processes per node and executions of 64, 128,
and 256 processes, but in the rest, they are the best option.
From the different mapping types, MD-OdroidC obtains a
lower performance for memory-bound algorithms (Figure 7a)
than the MD-OdroidM option. However, despite this,
MD-OdroidC continues to obtain a better price/performance
ratio than the others because it takes full advantage of the
cores of each board.

VI. SYSTEM USE IN THE CONTEXT OF THE SUBJECT

The proposed system has been introduced, validated, and
analyzed in the context of the subject Parallel and Massive
Computing of the fourth year of the Degree in Computer
Engineering at Rovira i Virgili University. This subject studies
multiprocessor architectures of shared and distributed memory
(MMC, MMD), going deepener into specific techniques for
efficient and parallel programming. For evaluating the subject,
there are two clearly differentiated parts that have the same
weight in the final grade, and which must also be passed
separately: the theoretical part and the practical part. The the-
oretical part consists of two exams that assess the theoretical
knowledge that the student has acquired. The practical part
consists of a practical exercise involving the parallelization of
a series of sequential codes and their subsequent execution to
evaluate their speedup. Therefore, the practical part aims to
consolidate the theoretical concepts of parallel programming.
In each academic year, two different problems are selected
that pose a degree of increasing difficulty. The first problem
is more affordable than the second. Each of these two exer-
cises needs to be solved with OpenMP (shared memory) and
MPI (distributed memory) standards. The resolution of these

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

ALIAGAS et al.: LOW-COST MULTICOMPUTER FOR TEACHING ENVIRONMENTS 179

two exercises with the two possible memory models involves
four different deliveries over the four-month period in which
the subject is taught. These deliveries have the same weight
in the final grade of the practical part (25% each); however,
students must obtain a minimum speedup (established by the
teacher of the subject) to be able to hand in their solutions
for assessment. If they do not obtain this minimum speedup
the students do not pass the practical part. It is also important
to note that practical exercises are resolved in groups of two
people.

The evaluation of each of the four practical exercises is
divided into two phases. In the first phase, an overall ranking
is obtained by comparing the work of each group with the
rest of the groups. In the second phase, all group members are
interviewed personally, in which the proposed solution and the
knowledge acquired from resolving the exercise are discussed.
Each of these two phases has a weight of 50% of the mark of
that practical delivery.

If we focus on resolving the exercises using a distributed
memory model, it is important to comment that the exercise
is executed on the Opteron and Odroid distributed memory
machines by varying the mapping of the processes and the
number of processes created. Two approaches are considered
regarding the type of possible mapping: (a) mapping oriented
to optimizing the amount of memory, and (b) mapping ori-
ented to optimizing the use of the CPU. In (a) you try to
occupy the maximum number of possible nodes with a single
process, before assigning several processes to the same node
(MD-OpteronM and MD-OdroidM options). In (b) you try to
map the neighboring processes within the same node, and
thus, communication between them will be more efficient
(MD-OpteronC and MD-OdroidC options). Finally, for each of
the two mapping options, different executions are performed
by varying the number of possible processes (starting from
a minimum of two processes and doubling the number to a
maximum of 32 for the Opteron machine and up to a maximum
of 256 for the Odroid machine). It should be noted that these
maximum values are the number of cores that each of these
machines have.

To evaluate an exercise, in the first phase, a ranking of
the different solutions delivered by the students is generated.
Therefore, from the two possible mapping options (memory-
bound and CPU-bound), the most favorable option (with better
speedup) is selected, both for the Opteron and the Odroid
machine. After selecting the best mapping on both machines,
all the speedups obtained by varying the number of nodes
(from 2 to 32 on the Opteron machine and from 2 to 256 on
the Odroid machine) are added together. The value of the
sums of each of the student groups is normalized to 1 to
obtain the ranking. It is important to note that the sum is used
instead of the harmonic mean in order to give more weight
to the executions with the greatest number of processes, since
these will be the ones that will obtain a numerical value of
higher speedup, and will have more influence in the order
of the ranking of each group of students. This rewards the
behavior of the exercise in which executions have a greater
number of processes. Based on the ranking, a rating of 10 is
assigned to the first group and the rest of the groups receive

a rating proportional to the distance they have from the first.
Again, it is important to note that if a minimum value is not
achieved in this sum normalized to 1, that practical delivery is
considered non-evaluable. Finally, in a second phase, a face-
to-face interview is carried out with each of the groups to
validate their knowledge of the solution presented and the
knowledge they have acquired with their resolution. It should
be noted here that the grade given to each of the two members
of the group may be different, depending on how each student
responds to the questions asked in the interview. However,
there is a very high correlation between the grades in phase 1
and phase 2. Groups that get a better speedup tend to get a
good grade in the face-to-face interview.

Figure 8 shows the results obtained by students in the
2018–2019 academic year in an exercise that uses search-
with-pruning to compute all the solutions of a partially started
Sudoku. In this case, the parallelization is carried out by
following a distributed memory model, and therefore using the
MPI standard on the Opteron and Odroid machines. Specifi-
cally, the results obtained in the Opteron machine are shown
with a mapping by optimizing memory (Figure 8b) and with a
mapping by optimizing the use of CPU (Figure 8c). The results
obtained in the Odroid machine are shown with a mapping
by optimizing memory (Figure 8d) and with a mapping by
optimizing the use of CPU (Figure 8e). The ranking of all the
students’ results, elaborated as detailed above, is also shown
(Figure 8f). In addition, the results obtained on the Xeon
shared memory machine are shown (Figure 8a).

Although the results of the Xeon machine are irrelevant for
the evaluation of the distributed memory exercise, they are
included to show that the Xeon shared memory machine has
a behavior similar to the Opteron distributed memory machine
(Figure 8b and Figure 8c). It can be seen that, in both cases,
from 32 processes (number of machine cores), it makes no
sense to create more processes, since both machines become
saturated. However, a greater number of processes can be exe-
cuted in the Odroid machine, obtaining a good performance.

The comparison of the practices delivered by the students
shows that group G11 obtained the best performance in the
distributed machines (MD-Opteron and MD-Odroid), espe-
cially for a high number of processes. It should also be noted
that groups G3 and G5 have abnormal executions and do
not improve performance no matter how they increase the
number of processes. Finally, it is worth mentioning the results
of group G4, which has normal performance improvements
until the creation of 32 processes (from that value the results
stagnate). The ranking obtained by the different student groups
(Figure 8f) shows that group G11 obtains the maximum per-
formance, that group G4 only just exceeds the set minimum,
and groups G3 and G5 do not reach the minimum and need
to improve in the next practical exercise. Therefore, group
G11 would obtain the highest grade in this part, group G4 the
minimum grade, and the rest a score proportional to the
distance from the best, in the following order: G7, G6, G9,
G10, G1, G2, and G8.

Finally, analyzing the evolution of the students’ grades and
considering their opinions about using the system (similar to
that of Emiroglu and Sahin [25]) will give us the necessary

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

180 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 3, AUGUST 2020

Fig. 8. Comparison of the evolution of speedup of student practices.

feedback to adjust the environment and improve the proposed
academic objectives.

VII. ADDED VALUE OF THE NEW SYSTEM

The students of the subject use for the first time with a
programming environment based on batch queues on dedicated
servers available 24/7. This is a new experience with very
fast learning, which allows them to work exclusively and thus
be able to repeat parallel executions in which the variation
in time depends only on their code. The system makes it
possible to effectively apply the trial and error methodology
studied in the pedagogical theory of behaviorism developed by
F. B. Skinner (1904-1990), among others, in the middle of the
20th century. By being able to repeat the different executions,
students reinforce their knowledge as they verify that the code
improves the result and reduces execution time. Therefore,
the teaching experience is positive, and the students evidence
this through their comments, because they have systems that
usually do not have access.

Students usually have previous experience, academic or
personal, with SoC systems (Raspberry Pi and similar). There-
fore, when teachers introduce the new server based on Odroid
boards, they generally see that students show increased inter-
est. This increased interest did not occur with the previous
server, since students were aware of its high price and that it
requires demanding installations in terms of refrigeration and
energy consumption.

To acquire parallel programming skills, the challenge is to
program systems with more than 100 processes (up to 256
processes in this study). While it is easy to access a shared
memory machine with 8 or 16 cores, it is not so easy to
access machines with hundreds of cores. This extra difficulty
forces students to schedule their exercises with sufficiently
scalable solutions. This teaching experience would not have
been possible if there had not been enough nodes/cores.

Another challenge that students face is the programming
of nodes with limited resources. The main cut in resources
is the computing capacity and RAM of each node. In this
case, the RAM is only 2 GB, which, although it is very
small by current standards, is proportional to the size of
the exercises to be solved in the subject. This means that
in a real parallel programming situation, in which problems
must deal with immense amounts of data, the manipulation
of the data to be processed must be effectively managed.
In these cases, it is necessary to find a compromise that allows
solving the problems raised to be solved by adjusting them to
the available RAM. In any simulation system, as a general
rule, more data implies more precision, but it is not always
possible to increase the data due to RAM and computing
power limitations. With this new server, students need to be
aware that the RAM is just 2 GB and that, if they assign a
process to a node, it can have these 2 GB to solve the part
of the exercise that corresponds to it (subtracting the RAM
required for the operating system). If in that same node as
many processes are assigned as there are cores (for example 4),
then each process can only have a quarter of the RAM, that is,
just 512 KB. This implies a new programming effort to adjust
the data volume that each process must deal with.

In summary, we found that the new server offers and
extends new paradigms that give students a more realistic
parallel programming experience based on increasing cores
and restricting resources, such as RAM.

VIII. CONCLUSION

This work details the construction of a low-cost multicom-
puter system, both its hardware and software, to be used
in practical parallel programming exercises. It is based on
Odroid-C2 boards, which have a cost equivalent to that of a
small server with shared memory. Therefore, more processors
can be included in the system. Furthermore, trying to match

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

ALIAGAS et al.: LOW-COST MULTICOMPUTER FOR TEACHING ENVIRONMENTS 181

the number of processors in systems with shared memory
servers interconnected by a network would cost much more.
In any case, the performance obtained in relation to price and
consumption is excellent.

We also discuss the use of this proposal in a parallel
programming subject of the Degree in Computer Engineering
and how it has been included in the assessment model of the
practical exercises. The results obtained are very satisfactory,
demonstrating this new low-cost system’s viability and the
added value that it gives to the parallel programming subject.
It was observed that this proposal brings students closer to a
system with a large number of processors and more intercom
options, it allows more realistic scalability studies, and is a
good compromise between benefits, price, and consumption.

Finally, we firmly believe that this system is perfectly
applicable to other educational fields, where multiple nodes are
required to perform practical exercises. Specifically, it could be
used in subjects on Distributed Systems (cloud computing …),
of System’s Administration (kubernetes …), and Network
Administration (switches …). In addition, we believe that it
would be interesting to apply this system in optional university
subjects, and even in subjects of the Higher Level Education
Cycle (CFGS), as the investment needed to set up the system
from scratch is quite acceptable, without taking a large chunk
out of the teaching budget.

REFERENCES

[1] C. Aliagas, P. Millán, C. Molina, and R. Meseguer, “MiniMultiCom-
putador de Bajo Coste,” in Actas de las XXV JENUI, vol. 4. Murcia,
Spain: Universidad de Murcia, 2019, pp. 31–38.

[2] A. Chhabra and G. Singh, “A cluster based parallel computing frame-
work for performance evaluation of parallel applications,” Int. J. Comput.
Theory Eng., vol. 2, no. 2, p. 226, 2010.

[3] A. Apon, R. Buyya, H. Jin, and J. Mache, “Cluster computing in the
classroom: Topics, guidelines, and experiences,” in Proc. 1st IEEE/ACM
Int. Symp. Cluster Comput. Grid, May 2001, pp. 476–483.

[4] M. Xu and Q. Su, “The realization of small cluster parallel computing
environment for college education,” in Proc. 9th Int. Conf. Comput. Sci.
Edu., Aug. 2014, pp. 861–863.

[5] D. Giménez, “Un curso práctico de programación paralela basado en
problemas de concurso español de programación paralela,” in Actas
de las XXII JENUI. Almería, Spain: Universidad de Almería, 2016,
pp. 19–26.

[6] J. Santamaría, M. Espinilla, A. Rivera, and S. Romero, “Potenciando el
aprendizaje proactivo con ilias&Webquest: Aprendiendo a paralelizar
algoritmos con gpus,” in Actas de las XVI JENUI. Santiago de
Compostela, Spain: Univesidade de Santiago de Compostela, 2010,
pp. 503–506.

[7] C. Ivica, J. T. Riley, and C. Shubert, “StarHPC—Teaching parallel
programming within elastic compute cloud,” in Proc. ITI 31st Int. Conf.
Inf. Technol. Interface, Jun. 2009, pp. 353–356.

[8] Massachusetts Institute of Technology. StarCluster Home Page.
Accessed: Jan. 13, 2020. [Online]. Available: http://star.mit.edu/cluster/
index.html

[9] F. Gomez-Folgar, R. Valin, A. Garcia-Loureiro, T. F. Pena, and I. Zablah,
“Cloud computing for teaching and learning MPI with improved network
communications,” in Proc. Workshop Cloud Edu. Environ. (WCLOUD),
vol. 945, 2012, pp. 22–27.

[10] G. A. Prieto and J. P. Mendoza, “Plataforma robótica didáctica de
bajo coste basada en la arquitectura software player/stage y en el
hardware de la Fonera,” IEEE Revista Iberoamericana de Tecnologias
del Aprendizaje, vol. 7, no. 4, pp. 239–245, Nov. 2012.

[11] R. A. Rodriguez, P. Cammarano, D. A. Giulianelli, P. M. Vera,
A. Trigueros, and L. J. Albornoz, “Using raspberry pi to create a
solution for accessing educative questionnaires from mobile devices,”
IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 13,
no. 4, pp. 144–151, Nov. 2018.

[12] C. Catalán Cantero and A. Blesa Gascón, “Enseñanza de sistemas
empotrados: De Arduino a Raspberry Pi,” in Actas de las XXII JENUI.
Almería, Spain: Universidad de Almería, 2016, pp. 351–354.

[13] G. Ortega et al., “Procesadores de bajo coste y su aplicación en la
docencia de Ingeniería de Computadores,” in Actas de las XXII JENUI.
Almería, Spain: Universidad de Almería, 2016, pp. 343–349.

[14] S. J. Johnston et al., “Commodity single board computer clusters and
their applications,” Future Gener. Comput. Syst., vol. 89, pp. 201–212,
Dec. 2018.

[15] A. M. Pfalzgraf and J. A. Driscoll, “A low-cost computer cluster
for high-performance computing education,” in Proc. IEEE Int. Conf.
Electro/Inf. Technol., Jun. 2014, pp. 362–366.

[16] I. E. Wina Rachmawan et al., “An embedded system for applying high
performance computing in educational learning activity,” EMITTER Int.
J. Eng. Technol., vol. 4, no. 1, pp. 46–64, Aug. 2016.

[17] K. Doucet and J. Zhang, “The creation of a low-cost raspberry pi cluster
for teaching,” in Proc. Western Can. Conf. Comput. Edu. WCCCE, 2019,
pp. 1–5.

[18] M. F. Cloutier, C. Paradis, and V. M. Weaver, “Design and analysis
of a 32-bit embedded high-performance cluster optimized for energy
and performance,” in Proc. Hardware-Softw. Co-Design High Perform.
Comput., Nov. 2014, pp. 1–8.

[19] R. V. Aroca and L. M. G. Gonçalves, “Towards green data centers: A
comparison of x86 and ARM architectures power efficiency,” J. Parallel
Distrib. Comput., vol. 72, no. 12, pp. 1770–1780, Dec. 2012.

[20] D. Göddeke et al., “Energy efficiency vs. Performance of the numerical
solution of PDEs: An application study on a low-power ARM-based
cluster,” J. Comput. Phys., vol. 237, pp. 132–150, Mar. 2013.

[21] Raspberry Pi Foundation. Raspberry Home Page, Information and Doc-
umentation. Accessed: Feb. 1, 2019. [Online]. Available: https://www.
raspberrypi.org

[22] Hardkernel Co., Ltd. HardKernel Home Page, Odroid-c2 Information.
Accessed: Feb. 1, 2019. [Online]. Available: https://www.hardkernel.
com/shop/odroid-c2

[23] Hardkernel Co. Ltd. Odroid Wiki, Ubuntu. Accessed:
Feb. 1, 2019. [Online]. Available: https://wiki.odroid.com/odroid-c2/
os_images/ubuntu/ubuntu

[24] Canonical Ltd. Ubuntu. Stress Ubuntu Linux Package. Accessed:
Jan. 13, 2020. [Online]. Available: https://packages.ubuntu.com/search?
keywords=stress

[25] B. G. Emiroglu and S. Sahin, “Analysis of students’ performances during
lab sessions of computer networks course,” J. Educ. Technol. Soc.,
vol. 16, no. 3, pp. 329–346, 2013.

Carles Aliagas received the degree in com-
puter science from the Polytechnical University of
Catalonia (UPC) in 1991. He is currently pursuing
the Ph.D. degree with Rovira i Virgili University
(URV). He is also a Lecturer with the Computer
Engineering and Mathematics Department, URV,
where he teaches and carries out research. His
research interests focus on processor microarchitec-
ture, memory hierarchy, and prediction in mobile
networks.

Montse García-Famoso received the degree in com-
puter science from the University of Deusto in 1994.
She is currently a Lecturer with the Computer
Engineering and Mathematics Department, Rovira i
Virgili University (URV), where she teaches and
carries out research. Her research interests include
methodologies and tools for university teaching in
computer engineering.

Roc Meseguer (Member, IEEE) received the grad-
uate degree in Telecommunications Engineering and
the Ph.D. degree in computer engineering from
the Polytechnical University of Catalonia (UPC)
in 1999 and 2012, respectively. He is currently a
full-time Associate Professor with the Computer
Architecture Department, UPC, where he teaches
and carries out research. His research interests
include distributed systems, particularly resource
allocation for large-scale systems, decentralized sys-
tems applied to environmental intelligence, and com-

munity networks based on bottom–up initiatives.

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

182 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 15, NO. 3, AUGUST 2020

Pere Millán received the degree in computer
science from the Polytechnical University of
Catalonia (UPC) in 1992 and the Ph.D. degree in
computer engineering from Rovira i Virgili Univer-
sity (URV) in 2018. He is currently a Senior Lecturer
with the Computer Engineering and Mathematics
Department, URV, where he teaches and carries out
research. His research interests focus on predicting
quality and improving performance in mobile net-
works.

Carlos Molina received the degree in computer
science and the Ph.D. degree in computer engineer-
ing from the Polytechnical University of Catalo-
nia (UPC) in 1996 and 2005, respectively. He is
currently a Senior Lecturer with the Computer Engi-
neering and Mathematics Department, URV, where
he teaches and carries out research. His research
interests focus on computer microarchitecture, qual-
ity prediction, and performance improvement in
mobile networks, as well as serverless computing.

Authorized licensed use limited to: UNIVERSITAT ROVIRA I VIRGILI. Downloaded on September 01,2021 at 09:14:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

