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Mobile Ad Hoc Network (MANET) middleware must be aware of the underlying multi-hop topology to

self-adapt and to improve its communication efficiency. For this reason, many approaches rely on

specific cross-layer communications to interact with the network protocols in the kernel space. But

these solutions break the strict layering of the network stack and hinder the portability of middleware

and applications.

The main argument of this paper is to move the routing protocols to the user space to simplify the

development, testing, deployment and portability of middleware and applications. If routing is just

another software component in the user space, cross-layering can be elegantly solved using advanced

software engineering techniques like component frameworks and explicit APIs. As a consequence, a

slight performance cost must be paid to achieve portability and easy deployment. But we will

demonstrate that the performance obtained by a user-space routing protocol is satisfactory for a wide

range of applications.

We have implemented the unicast MANET OLSR protocol in Java (jOLSR) and, on top of it, we have

created a novel overlay multicast protocol (OMOLSR). We have then integrated both routing protocols

(jOLSR, OMOLSR) as software components in a well-known group communication toolkit (JGroups).

Modifying the JGroups toolkit, we have devised a topology-aware group communication middleware

for MANETs (MChannel). In our MChannel middleware, group membership is obtained directly from

OMOLSR multicast trees and failure detection is obtained from jOLSR active probing. We have validated

our approach in several real testbeds to demonstrate the feasibility and efficiency of our middleware.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the next years we will see a boost in mobile terminals
including wireless connectivity (802.11X). As a consequence,
Mobile Ad Hoc Networks (MANETs) could represent an interesting
substrate for many types of applications not requiring a fixed
network infrastructure (Access Points). When every participant is
a routing node in the network, several interesting multi-hop
scenarios may arise. For example, spontaneous collaborative
applications are of particular interest for settings where many
users can interact with close-by participants (conferences,
campus, stadium, popular events, cities and games).

But the reality is that MANET networks are seldom used in
everyday life. As stated in Bouckaert et al. (2008): ‘‘A possible
explanation is the fact that only few of the numerous theoretically
promising proposals lead to practical solutions on real systems’’.
Authors outline several causes like hardware issues regarding
ll rights reserved.

n be found at the program of

+34 977 55 97 10.
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heterogeneous devices, cross-layer dependencies, and the existing
gap between simulation and real test scenarios.

Besides, application development in this domain is quite
complex. Application developers must face challenges like
mobility, heterogeneity, dynamicity or topology awareness to
name a few. A clear trend is to rely on advanced MANET
middleware (Hadim et al., 2006) capable of dealing with the
aforementioned problems and thus simplifying application devel-

opment. In these settings, being aware of the underlying routing
protocols and topology is very important for MANET middleware
and applications. If the middleware just uses the underlying
transport protocol as a black box, it can incur in communication
inefficiencies due to the multi-hop nature of the medium.

A typical solution has been to implement cross-layer designs
(Conti et al., 2004; Goldsmith and Wicker, 2002; Lin et al., 2006)
enabling the construction of more efficient middleware (using
topology information). In this line, cross-layering is required
between user-space MANET middleware and kernel-space MANET
protocols. However, we believe that this approach is flawed
because it implies improper ad hoc hacks that break the clean
network layering model. These approaches solve specific problems
but are difficult to port or adapt to heterogeneous devices and
operating systems.
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P. Garcı́a López et al. / Journal of Network and Computer Applications 33 (2010) 588–602 589
Another recent trend in MANET settings is to follow a
framework design to the construction and deployment of ad hoc
routing protocols (Ramdhany et al., 2009). The complexity of
testing and development of ad hoc protocols is simplified thanks
to advanced software engineering approaches like component
frameworks. These frameworks combine routing components in
the user space with network tools (netfilter) in the kernel space.
These recent works are in line with the argument of this paper.
However, we go one step further than these protocol development
frameworks.

We propose to completely move routing protocols to the user
space avoiding dependencies with kernel components. This design
decision entails the two major contributions of our approach:
portability and topology awareness. If routing is another software
component, the middleware and applications are self-contained
and portable to heterogeneous environments. Besides,
applications can access the routing information to be aware of
the multi-hop topology and optimize their communications.

In this paper, we will present the advantages and drawbacks of
moving the routing protocols to the user space. As a proof of
concept, we focus on the application domain of group
collaboration in MANET scenarios (MChannel). Particularly, in
the context of the European project IST-POPEYE (Peer to Peer
Collaborative Working Environments over Mobile Ad Hoc Net-
works), we have developed a Java implementation of the OLSR
protocol using UDP sockets (jOLSR). To address the group
communication issues of the collaborative middleware, we have
created OMOLSR, an overlay multicast channel that directly
benefits from the jOLSR routing protocol and failure detection.
Finally, using jOLSR and OMOLSR we have modified an existing
group communication middleware (JGroups) to support MANET
settings. We will demonstrate by extensive experimentation in
real testbeds that the system is efficient and that it benefits from
the knowledge of the underlying topology.

The structure of this paper is as follows: in Section 2 we present
related work, then in Section 3 we present some design decisions
and in Section 4 we describe the overall architecture. In Sections 5
and 6 we present validation results using experimentation, and
finally we draw some conclusions in Section 7.
2. Related work

It is widely accepted in MANET settings that cross-layer

solutions are required for achieving performance and adaptation
in many scenarios (Conti et al., 2004; Goldsmith and Wicker, 2002;
Lin et al., 2006). Nevertheless, many researchers also recognize
that strict layering enables controlled interaction among layers
(each layer is independent developed and maintained). Besides,
many cross-layer solutions generate highly coupled code that is
impossible to maintain efficiently because unexpected dependen-
cies between layers may arise.

To avoid this coupled cross-layer solutions, authors in Conti
et al. (2004) proposed a vertical component named Network
Status that would avoid improper inter-layer communication. All
the layers (MAC, Network, Transport, Middleware and
Application) would then communicate directly with Network
Status and thus avoiding direct coupling between layers. This
design is more elegant than the classical cross-layer solutions but
still faces an important problem: it is not a standardized operating
system component so it is difficult to port and maintain.

Concerning the middleware and application layers, it is also
obvious that cross-layer solutions clearly present better
performance (Delmastro, 2005; Conti et al., 2005). But as stated
before, cross-layer solutions break the strict layering of the
network stack and hinder the portability of middleware and
applications.

Regarding Protocol Development Frameworks, we outline three
main works: MANETKit (Ramdhany et al., 2009), ASL (Kawadia,
2003) and PICA (Calafate and Manzoni, 2003). All of them try to
simplify protocol development and testing by moving routing
protocols to the user space. While PICA and ASL only offer design-
time and implementation-time facilities, MANETKit also offers
runtime reconfiguration thanks to its component framework
approach. These frameworks achieve performance numbers close
to the transport protocol kernel implementations thanks to their
interaction with kernel tools like netfilter. Nevertheless, their
interaction with such kernel tools restricts their portability to
heterogeneous settings. Furthermore, such frameworks
are not focused on providing high level middleware services to
applications.

Concerning MANET communication middleware, other works
also followed a purely user-space routing solution. In Mottola et al.
(2008) authors present COMAN, a protocol to organize the nodes
of a MANET in a tree-shaped network providing content-based
routing functionalities. COMAN is implemented at the application
layer and it benefits from topology information to self-repair and
reconfigure the middleware. In order to provide multicast
communication, COMAN does not use per-group trees. Its strategy
is based on connecting all the brokers in a tree-shaped network. In
consequence, a multicast message will be forwarded to all brokers
with subscribers interested in.

In Yoneki and Bacon (2005) authors also present a content-
based publish/subscribe system for MANETs that extends the
ODMRP (On-Demand Multicast Routing Protocol) to construct an
optimized dynamic dissemination mesh. Authors in Yoneki and
Bacon (2005) stress the importance of cooperation between the
middleware-tier and routing components.

Both COMAN and ODRMP present purely user-space solutions
that create their own specific topologies. They show the
advantages of self-adaptation and portability of middleware
components. Thus, they are clearly aligned with our proposed
trend for MANET middleware of moving routing logic to the user
space. But COMAN and ODRMP, like many overlay multicast
protocols, focus on adaptive tree construction and one-to-many
communication. They do not build multicast protocols that benefit
from an underlying unicast routing protocol. As we will explain
later, we present a complete communication model for MANETs
that offers both unicast and multicast services without implying
redundant control messages.

Furthermore, they do not provide topology-aware high level
services to applications. Our position is that many applications
explicitly require topology awareness. For example, a data
replication application could require topology awareness to
distinguish between close-by and far nodes in term of hop
distance. This is not possible with COMAN and ODRMP, since
they make the network transparent to their applications.

Regarding Group Communication services (GC) over MANETs we
must outline two research works: JazzEnsemble (Friedman, 2004)
and MobileMan (Conti et al., 2006). The authors of JazzEnsemble
devised lightweight membership protocols based on fuzzy
membership and gossip-based failure detection protocols. Mobile-
Man implemented a cross-layer solution using the FreePastry
overlay over the OLSR protocol. Nevertheless, none of them
construct their GC primitives over standard MANET unicast and
multicast routing protocols (OLSR) like us. As we will explain later,
our decision entails important communication savings.

Finally, we outline an important survey entitled ‘‘Trends in
Middleware for Mobile Ad Hoc Networks’’ (Hadim et al., 2006).
Authors classify MANET middleware into six categories: event-
based and message oriented middleware, component-based and
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mobile agents middleware, peer-to-peer middleware, tuple spaces
middleware, data sharing middleware, and virtual machine based
middleware. They compare these categories under an evaluation
framework that considers six aspects: power awareness, openness,
scalability, mobility, heterogeneity and ease of use.

We draw an important conclusion from this study; while four out
of the six variables—power awareness, scalability, mobility and ease
of use—depend on the specific design of the MANET middleware,
both openness and heterogeneity require a solution that implements
the routing logic in the user-space. On the one hand, supporting
heterogeneous devices and operating systems is seriously handi-
capped if the middleware relies on cross-layer solutions or depends
on specific kernel components. On the other hand, openness, or the
possibility to extend and modify the system easily, also relies on
clean software engineering architectures (like component models)
that avoid dependencies with the network stack.

As we will explain in the following sections, our approach for
MANET middleware is simple: moving the routing protocols to the
user space. This is probably not a solution for all kind of problems
and we neither aim to replace existing transport layer MANET
protocols. But we will explain how this simple solution can be
appropriate for many scenarios where cross-layer information
flows are required by middleware and applications.
3. Motivation and design decisions

In MANET settings, moving the routing logic to the user space
can be specially interesting for several applications. For example,
context-based or location-based applications may use the topol-
ogy information to communicate with close-by nodes while
moving. Local advertisements can thus be disseminated only to
nodes at one or two hops. In this case, users may discover and
contact services that are located at a given range. A concrete
example can be a mobile tourist guide application for museums or
cities. This application may offer specific information to the user
based on the location of the nodes. For example, the user can
obtain information about a close-by monument or even interact
with other tourists.

Other target applications are spontaneous collaboration tools
or interactive games. They may use topology information to store
or disseminate data depending on their specific locations. If these
applications ignore the underlying topology (broadcast) they will
be rather inefficient transmitting information to inappropriate
nodes. For example, multi-user games can employ hop scoped
multicast to limit traffic to specific zones. Furthermore, collabora-
tive tools like shared whiteboards or file sharing can benefit from
the stability of nodes or from their strategic location in the graph
to store and retrieve their required information.

In general, our approach will be specially interesting in the
following years when mobile terminals like smart phones with
wireless connectivity will be widespread. The heterogeneity of
these devices will require portable solutions for infrastructure-less
communications. The openness and flexibility of our approach is
more suitable than ad hoc cross-layer solutions. As we will explain,
portability is one of the key aspects of our proposed solution.

Before delving into our main technical contribution, we first
present the advantages and drawbacks of moving the routing logic
to the application layer, and then we explain the design decisions
behind the chosen unicast and multicast routing protocols.

3.1. Advantages and drawbacks of application-layer MANET routing

Let us first present the major advantages of this approach:
Portability to heterogeneous environments: Portability to hetero-

geneous devices and operating systems is ensured thanks to the
use of portable programming infrastructures (virtual machines) in
the user space. Cross-layer solutions are tied to specific environ-
ments and thus prevent the support for heterogeneity. The
middleware can be developed transparently from the operating
system and thus simplifying kernel compilation, library depen-
dencies and hardware settings. Mobile phones could easily install
an application that creates its own MANET adapted to its specific
requirements. It is far more difficult to motivate users to install
new transport protocols because their limited knowledge and
technical skills. Besides, it is more complex for developers to
develop and maintain OS specific protocol distributions.

Topology-aware overlay: In MANET environments, nodes are
connected in a peer-to-peer network created in the transport layer
using protocols like OLSR (Jacquet et al., 2001) or DYMO (Chakeres
and Perkins, 2004). If we just move these protocols to the
application layer (OLSR for example), the topology does not
change. The application layer peer-to-peer network will then
reflect exactly the physical connections. Furthermore, the applica-
tion layer protocol will send packets using UDP unicast connec-
tions in the same way that the transport protocol would operate.

Flexibility, openness and adaptation to specific requirements:
Different applications may have completely different require-
ments for the routing layer and underlying topology. If it is a
matter of changing a software component, it is feasible to develop
specific adaptive routing layers for different settings.
Furthermore, the use of components and composition technolo-
gies may provide design-time, compile-time and runtime reconfi-
guration. For example, emergency scenarios, military applications
or collaborative work settings may develop specific underlying
routing components adapted to their particular requirements.

Simplicity of development, testing and deployment: It is easier to
develop and test routing protocols in the application layer than in
the transport layer. It is also possible to develop and test MANET
applications using software emulation in a single machine and
afterwards test them in real testbeds with multiple devices.
Protocol development frameworks are already offering emulation
environments for testing and developing new protocols. MANET
middleware can offer the same advantages to MANET applications.

Clean interaction between middleware and routing protocols:
When MANET routing is just another middleware component we
can use well-established software engineering practices to specify
module interaction. With standardized APIs in the application
layer it is not necessary to break the strict layering of the network
stack for MANET middleware.

On the contrary, we find these major drawbacks:
Specific routing service: At the time present, our approach does

not offer a generic service for all the applications running in an OS
(like transport protocols do). Only the application using this
middleware will benefit from the MANET routing services. If we
have for example existing videoconferencing or desktop sharing
tools using standard transport protocols, they will not be able to
benefit from our middleware.

Performance: It is obvious that working in the user-space
implies a penalty over kernel transport protocols. Besides this, the
implementation in Java may also damage the performance of the
protocol compared to native kernel implementations. However,
we justify in the validation that our middleware achieves
performance numbers that are reasonable for a large number of
applications. We sacrifice some performance to obtain portability
and flexibility of MANET applications.
3.2. MANET protocols

Here we include a brief summary of recent unicast and
multicast protocols considered in our design. Concerning unicast
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protocols, we considered two recent protocols (one reactive and
one proactive):

DYMO (Dynamic MANET On-Demand) (Chakeres and Perkins,
2004) is a reactive unicast protocol, successor of the popular AODV
(Ad Hoc On-Demand Distance Vector) and shares many of its
functionalities. Routes are created on-demand by sending request
and response control packets. This means that when nodes stop
sending messages, there is no overhead traffic in the network.
Furthermore, no global topology information is available. We can
see that DYMO is more suitable for sparse communications.

OLSR (Jacquet et al., 2001) is a proactive unicast protocol, so it
maintains routing table information up to date continuously.
Topology information is exchanged by means of controlled
flooding of Topology Messages (TC messages). HELLO messages
provide information about the two-hop neighborhood in a way
that each node selects a neighbor as MPR (Multi-Point Relay).
These MPRs are in charge of sending topology messages to the
entire network performing controlled flooding. With the topology
information, each node can build the routing table in order to be
able to send messages to the other nodes. OLSR performs well in
small-medium sized networks where node density is relatively
high. The knowledge of the topology, together with its good
performance with dense communication patterns, turns OLSR in a
good candidate for performing group communication in MANETs.

Concerning MANET multicast protocols, we reviewed two
overlay multicast protocols (ALMA, PAST-DM) and the MOLSR
network multicast protocol.

ALMA (Application Layer Multicast Algorithm) (Ge et al., 2006)
creates a tree of logical links between group members. The aim of
this protocol is to reduce the cost of each link in the tree by
reconfiguring the tree under mobility and congestion situations.
When a node joins the network it must select a node as a parent,
so as to become part of the tree. If tree performance drops below a
defined threshold, the node must reconfigure the tree by switch-
ing the parent or freeing children.

PAST-DM (Progressively Adaptive Subtree in Dynamic Mesh)
(Gui and Mohapatra, 2003) is an overlay multicast protocol based
on the construction of a dynamic virtual mesh. The mesh is
maintained dynamically through the exchange of link state
packets, thus adapting to network topology changes. With the
topology information extracted from the mesh, nodes compute a
source-based Steiner tree to deliver information to all members in
the multicast group.

In conclusion, both protocols, as most overlay multicast
protocols, need to send control packets to keep their structures
up to date using periodic exchange of link packets or commu-
nicating with other nodes in the tree. In both cases, the protocols
ignore the underlying unicast network routing protocol so they
perform redundant communication and, in consequence, band-
width misuse. We have been inspired in ideas from both of them
to create our new OMOLSR protocol.

Because our group communication middleware must provide
both unicast and multicast services, it is preferable to use multicast
protocols that benefit from the OLSR unicast protocol. For example,
MOLSR (Multicast extension for the Optimized Link State Routing
protocol) (Jacquet et al., 2001) is a multicast routing protocol for
MANETs designed to work on top of OLSR nodes. This protocol
provides multicast routing that benefits from the topology knowl-
edge of OLSR (MPRs). This strategy reduces drastically the number of
control messages compared to other simple flooding strategies.
However, we believe that the amount of control messages sent by
MOLSR could also be avoided. Such protocol could benefit directly
from the topological information given by the underlying unicast
routing protocol to avoid redundant control traffic. For this reason,
we decided to implement our own multicast protocol over OLSR. We
will further explain our OMOLSR protocol in the following section.
4. MChannel: group communication middleware for MANETs

In the context of the European project IST-POPEYE (Peer to Peer
Collaborative Working Environments over Mobile Ad Hoc Net-
works), we have designed and implemented a complete group
communication middleware for MANETs.

Instead of constructing an entire GC toolkit from scratch we
decided to modify a well-known Java toolkit like JGroups. JGroups
is a toolkit for reliable multicast communication that offers a
JChannel abstraction providing group membership, methods to
send messages to one or to all members in a group, and event
listeners about the channel state (member joins, leaves and
received messages). Furthermore, JGroups offers a flexible proto-
col stack with many existing protocols for group membership,
failure detection, flow control, fragmentation of packets, message
ordering and reliability over IP multicast.

But JGroups uses IP unicast and IP multicast to send messages
to group members. For this reason, we have created two MANET
routing protocols in the user space: jOLSR (implementation of the
OLSR unicast protocol) and OMOLSR (a novel multicast protocol
over jOLSR). Both jOLSR and OMOLSR have been integrated as
standard components in the JGroups protocol stack.

Furthermore, JGroups membership protocols, failure detection
and flow control are not designed for multi-hop settings. They
generate excessive traffic communication and acknowledgments
because they ignore the underlying topology. For this reason, we
have implemented a novel abstraction, namely MChannel, where
group membership is obtained from the OMOLSR protocol, failure
detection is obtained from the jOLSR protocol, and our modified
flow control protocol benefits from jOLSR topology information.
Besides, the MChannel also offers an added API to third-party
applications with information about the underlying topology. This
is very important for applications that must be aware of the
topology to optimize their behavior.

In addition, we have created an emulation environment for
MANET applications. We have short-circuited the JGroups protocol
stack to emulate the multi-hop communication in a single node.
Using a network definition file in Pajek format (Batagelj and
Mrvar, 1998), it is possible to create a multi-hop topology. The
emulator supports simple mobility and packet loss. The interest-
ing aspect is that it is possible to develop and test collaborative
applications in a single machine using this emulator. Without
modifying the application, it is then possible to move it to a real
testbed. The same applies for the development and testing of the
MANET protocols (jOLSR and OMOLSR).

To explain the overall architecture (see Fig. 1), we will proceed
now bottom-up describing the three building blocks of our
platform: jOLSR, OMOLSR and MChannel.
4.1. jOLSR

jOLSR is an application level implementation of the OLSR
routing protocol (Jacquet et al., 2001) written in Java. jOLSR
implements nearly all components of the core functionality of the
OLSR standard. Although the core functionality also includes
support for multiple interface addresses, this feature is not
provided in the current version of jOLSR in order to simplify the
implementation.

jOLSR stores network information in different tables similarly
to OLSR specification: Neighborhood information base (NIB) stores
neighbor information; Local Link Information Base (LLIB) keeps
updated information about the state of links to the neighbors;
Topology Information Base (TIB) maintains information of the
network topology to perform routing calculation.
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Like OLSR, jOLSR is a proactive link state protocol that
maintains the topology information thanks to periodic Topology
Control (TC) messages between nodes. In both OLSR and jOLSR, TC
messages are sent periodically from one node to the rest of the
network, so all nodes can compute its own topology graph. We
have realized that by adding little information in TC messages, we
can disseminate information easily to all nodes in the network.
This is in fact really useful since our multicast routing protocol
needs information about the multicast groups joined by each
node. We will explain it in detail in the following section.

TC message modification: jOLSR send two types of control
messages, HELLO and TC (Topology Control) messages. HELLO
messages permit a node to know its one-hop and two-hop
neighbors. Based on this information, the node can select its
multipoint relays (MPR) which will be in charge of performing
controlled flooding. TC messages are sent to all the nodes in the
network thanks to this controlled flooding mechanism, and
disseminate topology information of the local node to all nodes
in the network. Therefore, we attach the multicast address of the
groups joined by the local node in TC messages, as Fig. 2 depicts.
4.2. OMOLSR

OMOLSR (overlay multicast over OLSR) is a new application level
multicast routing protocol, designed to work on top of jOLSR.
OMOLSR computes locally Minimum Spanning Trees by benefiting
from the topology information gathered by jOLSR. The main
characteristic of OMOLSR is that it does not need to send additional
control packets to perform multicast delivery. The unicast routing
protocol already provides all necessary information.

Thanks to the TC message modification, OMOLSR propagates to
jOLSR the multicast addresses of groups joined by the local node.
jOLSR also notifies OMOLSR—Topology Events—of group changes
received from TC messages. With this information, OMOLSR updates
its Multicast Group Table and computes the Minimum Spanning Tree.

Multicast Group Table: The Multicast Group Table keeps the
information about the multicast groups joined by each node. This
information is updated when the local node decides to join a new
group or when it receives a new TC message. The information in
this table is used by the multicast routing protocol and changes in
the table are reported as membership events to the application.
When a change is detected in the neighbor table, in the topology
table or in the multicast groups table, a graph containing the
members of the group is computed. The multicast protocol will
receive a new event with the information of this graph.
In order to calculate the graph with the members of the group,
we obtain an approximate representation of the network by
creating a network graph from the information stored in the
topology table. Then we check in the Multicast Group Table which
nodes belong to which group, so we create an event for each
different group in the table. The graph is used by the multicast
protocol for retrieving updated membership information.

Basic operations: The basic operations of OMOLSR are the
dynamic computation of the Minimum Spanning Tree and the
routing of multicast packets. In first place, OMOLSR computes a
virtual mesh that connects all members of the multicast group.
This mesh is a contraction of the network graph that jOLSR
generates from the Neighbor Table and the Topology Table. By
using this contracted graph, which contains only the members of
the group, the local node can easily know which members are
located at one hop. These nodes located at one logical hop are also
known as virtual neighbors of the local node. The procedure of
computing the contraction of the graph is performed for each
multicast group the local node is member of. For example, in
Fig. 3a nodes C and H are at two hops from the point of view of the
routing table. However, they belong to the same multicast group
and they are at one logical hop in the multicast spanning tree
(Fig. 3a): they are virtual neighbors.

Then, once the graph is ready, node A computes a Minimum
Spanning Tree with the local node as the source of the tree, as
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depicted in Fig. 3(b). The tree will now be used for routing packets
to all the members of the group.

Multicast routing: In order to route multicast packets, OMOLSR
uses an explicit multi-unicast scheme. When the application
generates a new multicast packet, OMOLSR routes the message
based on the tree computed for that multicast group. Note that
this tree is only recomputed in each node when a topology change
is notified from jOLSR. The multicast algorithm proceeds as
follows: a copy of the packet is sent to each virtual neighbor,
which is responsible for delivering the message to a certain
forwarding subset of nodes. This subset consists of all the nodes
that are in the subtree of each virtual neighbor. This information is
then attached to the header of the data packet.
Algorithm 1. forwardMulticastMessage(Message msg)
1. Set /NodeS forwardingTableEntry’getForwardingTableEntryFromHeaderðmsg,localNodeÞ

2. if forwardingTableEntry is not empty then
3. Set /NodeSVN’getVirtualNeighborsðlocalNode,forwardingTableEntryÞ

4. Set /NodeSNVN’getNonVirtualNeighborsðlocalNode,forwardingTableEntryÞ

5. /* Build a new table collecting all the virtual neighbor’s children
existing in the Network Graph */

6. Map /Node,Set/NodeSSforwardingTable’buildForwardingTableðVN,NVNÞ

7. msg.updateForwardingTableOnHeader(forwardingTable)
8. msg.updateSourceAddressOnHeader(localAddress)
9. for all neighbor in VN do
10 sendMessage(msg, neighbor)
11. end for
12. end if
As we can see in Algorithm 1, when a node receives a multicast
message, it first obtains its own forwarding subset (line 1). Then, it
computes the new forwarding table with the nonvirtual neighbors
found in its network graph (line 6). It is worth saying that the
network graph is used to adapt the forwarding table to topology
changes. This forwarding table is then appended to the header of
the new message (line 7) and sent to all its virtual neighbors (line
10). The process is repeated until the node’s entry of the
forwarding table is empty.

4.3. MChannel

We have extended an existing abstraction (JChannel) of a well-
known toolkit for reliable communication (JGroups). The key
feature of JGroups is its flexible protocol stack, which can be
configured and extended depending on the communication needs.
Each protocol in the stack provides different functionalities:
ordering, reliability, membership, state transfer, etc.
Fig. 3. The spanning tree for the node A. (a) Actual network graph; colored n
On top of the routing protocols we have developed a channel
abstraction which enables flexible group communication over
mobile ad hoc networks: the MChannel. The main characteristic of
MChannel is that users can send messages to a single member or
to all the members in the group even if they are not in range. In
consequence, a MChannel is bound to a single group, so if we want
to communicate in two groups, we should create two different
channels.

As we can see in Fig. 4, MChannel offers methods to send one-to-
one or one-to-many messages to group members (send), a method to
send messages to one-hop neighbors (sendToNeighbors), a method
to obtain the topology information (getNetworkGraph), and methods
for subscribing to events in the group (registerListeners).

Our GC middleware for MANETs provide the following services:
group membership, failure detection, flow control, reliability and a
local emulation environment.
Group membership: GC toolkits like JGroups maintain member-
ship and failure detection pinging frequently or using keep-alives
to all members in the JChannel. Whereas this approach works fine
in local area networks, it can severely harm the overall MANET
network creating unnecessary traffic. This happens because
JGroups is unaware of the multi-hop nature of the medium. We
provide a lightweight group membership protocol that directly
benefits from the group information of the OMOLSR multicast tree.
In our case, membership changes in OMOLSR (Topology Events)
are an extension of JGroups membership events and are injected in
the same way.

Failure detection: As explained before, failure detection implies
pings or keep-alives to all group members. Again, this works in flat
groups, but it causes a real burden in a multi-hop network. Our
solution is to rely on the jOLSR topology detection algorithms.
jOLSR is already checking the availability of nodes and continuously
repairing the topology graph. Because of that, it is optimal to benefit
from this information to detect leaving partners or failing nodes. It
odes belong to the multicast group. (b) Multicast tree seen from node A.
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is nonsense to duplicate the communication overhead if jOLSR is
already doing that job in an efficient and decentralized way.

Flow control: JGroups provides a simple flow control protocol
based on a credit system. Each sender has a number of credits
(bytes to send) and when the credits have been exhausted, the
sender blocks. Each receiver also keeps track of how many bytes it
has received from a sender. When credits for a sender fall below a
threshold, the receiver sends more credits to the sender.

Again, the existing algorithm does not take into account the
underlying multi-hop setting so data flows are not optimized for
the underlying network. We have modified the JGroups FC (flow
control) protocol to benefit from topology information. Our
strategy is to assign credits to nodes in different proportions
depending on the hop distance. The closest nodes will obtain more
credits whereas distant nodes will get less credits. With this
decision we adjust the flow to the possible throughput between
nodes.

Reliability: We have implemented both routing protocols
(jOLSR and OMOLSR) as JGroups protocols so we can benefit from
unicast reliability and ordering by adding the UNICAST protocol to
the JGroups stack. This unicast reliability layer uses a point-to-
point acknowledgement scheme to provide lossless transmission
of unicast messages. Therefore, multicast reliability is also ensured
by adding this layer between both protocols: OMOLSR splits each
multicast packet into several unicast packets that will be sent
under the acknowledgement scheme.

Emulation environment: Finally, a clear goal of our work is to
simplify the development, testing and deployment of MANET
applications and protocols. For that reason, we provide an
emulation layer for both MANET collaborative applications and
routing protocols. It is thus possible to test applications in a single
machine and later on move the same applications to a real testbed.
This layer offers a smooth transition from local emulation to real
experimentation without changing at all the application and
routing code. To implement the emulation layer, we replace the
UDP layer of the JGroups protocol stack for a virtualized layer:
socket message delivery is replaced by local message queues.

In this section we have exposed our middleware architecture.
In the following two sections we will report the validation results
we have obtained with our implementation. First, in the next
section, we detail several experiments that demonstrate that our
implementation is adequate for a wide range of scenarios. Second,
in Section 6 we compare the overheads that are introduced by
routing at user space to those produced by network layer routing
protocols.
5. Middleware validation

Many research works in MANET protocols perform their
validation in simulation environments. As pointed out in Tschudin
et al. (2005), there is a serious lack of real-world experiences in
MANET research. Furthermore, there is a big gap between
simulation and experimentation. Instead, since our ready-to-use
middleware is intended to be used by real applications, we believe
that a real-world test should be done to verify the middleware’s
feasibility and the performance of the routing protocols.

Therefore, in this section we describe several real tests which
have been conducted to verify that our middleware is able to be
the basis of group applications over MANET networks. We
designed four test categories: the first three ones were intended
to measure the middleware’s reliability and resiliency with static
nodes whereas in the fourth one mobility was tested.

Different hardware and software configurations were used. The
computers used for the static tests were heterogeneous, including
desktop PC (P4 3.0 Ghz Atheros AR5001X+ with 802.11b/g),
laptops (Asus Z53S-2 Gb-e/Wlan 802.11 g) and also netbooks
(Asus Eee PC 901 with 802.11n). Operating systems also were
heterogeneous: Microsoft Windows XP, Vista and Linux. In
contrast, mobility tests were carried out with a single laptop
model (HP NX6125 with a Broadcom 4318 802.11b/g and
Windows XP), in order to unify radio ranges. jOLSR timers were
configured following the standard defined in RFC3626 (Clausen
and Jacquet, 2003) (Hello_interval¼2 s, TC_interval¼5 s). All tests
used the MChannel’s standard protocol stack (emulation disabled,
flow control and reliability enabled) except mobility tests, where
the reliability mechanism was disabled to measure packet loss
ratios. Every middleware test was repeated three times and
collected data were averaged.
5.1. Test 1: real working group

The first aspect we wanted to test was the overall behavior of
our middleware with a real application and common users. For
this reason, this test is a qualitative analysis of MChannel. It should
demonstrate that (i) the middleware is feasible; (ii) it works
correctly with heterogeneous hardware and operating systems;
and (iii) users were ready to use it in less than 1 min. Concretely,
both (ii) and (iii) points are really important to verify because they
are direct benefits from moving routing protocols to the user
space.

With this purpose, we developed a multicast chat application
capable of maintaining several chat groups at same time. This
application also keeps track of all sent and received messages as
well as it shows periodically the underlying topology graph
obtained from the middleware.

Therefore, 40 computer science students were told to partici-
pate in this test with their own laptops. In this way, heterogeneous
devices were involved using different O.S. (Windows XP, Linux)
and different wireless cards. Nevertheless, installation was very

easy, as both the middleware and the application were developed
with Java. Notice that it would be a complex task if routing
protocols were not at application layer.

Students were distributed in several groups along the campus.
The resulting network was almost static and had a diameter of
four hops. The students established correctly different multicast
groups and were able to communicate successfully with other
participants. We measured in the biggest multicast group 20
laptops participating at the same time.

As a qualitative analysis, we conclude that the real world
experiences were successful in the sense that chat application was
possible and satisfactory in real-time, proving the middleware’s
feasibility. This was corroborated during the posterior analysis of the
logs generated by the chat application. The mentioned analysis
showed that both unicast and multicast messages were sent and
received correctly.
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5.2. Test 2: reliability

With this test category, we wanted to evaluate the perfor-
mance and behavior of the multi-hop forwarding mechanism. In
this context, we focused in the analysis of how the number of hops
affects to the throughput and retransmissions.

In order to carry out this test we used a file transfer application
over the unicast service of the middleware.

We evaluated our middleware using a twofold metric: (i)
throughput—i.e. total amount of application level information sent
per unit of time—measured in MBps, and (ii) ratio of retransmitted

packets over the total sent.
Hence, we disposed five computers aligned statically in the

same room. Because all the computers were in range, we forced
the hop sequence through setting up the proper rules for IPTables
local firewalls. The leftmost computer sent a 15 MB file to other
nodes, at different hop distances. Wireless cards were configured
at 11 MBps transmission ratio. We executed three times the test
and the averaged results are depicted in Fig. 5.

As we can see in Fig. 5, we obtained a reasonable performance
ranging from 650 kBps at one hop, and decaying until 150 kBps at four
hops. The throughput decreases in average about 200 kBps per hop.
The rate of retransmissions is low in proportion, ranging from almost
0% at one hop to 14% at four hops. These results were possible because
the middleware used the flow control and reliability protocols.

It is important to remark two points to understand this
behavior: in first place, the maximum throughput is determined
by the slowest node—in this case a netbook. Secondly, all nodes
were in range and competing for the medium. This fact reduces
the overall throughput, delays the acknowledgments and, as a
consequence, increases the number of retransmissions.

In conclusion, these results demonstrate that our middleware is
feasible and reliable for short and medium diameter networks.
Specially, when the applications involved require unicast reliability
and certain degree of throughput. According with the results, our
middleware could provide a good service to a large number of
synchronous applications like shared whiteboards, tele-pointers or file

sharing. Furthermore, this throughput is reasonable for voice commu-
nication applications and even more if the reliability protocol (unicast
retransmissions) is disabled.
Fig. 6. Node failure scenario and self-repair process.
5.3. Test 3: resiliency

In this third test category, we aimed to prove the routing
tolerance to node failures. As the previous test, the application
used was a file transfer over the unicast service of the middleware.
We selected three metrics for this test: (i) throughput of the
Fig. 5. Rate of retransmissions and throughput by hops.
intermediate nodes, (ii) retransmissions per second in the source
node and (iii) route recovery time.

The scenario consisted of four nodes making up a rhomboid
topology without mobility, as depicted in Fig. 6. Nodes 1 and 4 could
not see each other because IPTables filter rules. A file was sent from
nodes 1 to 4 through one intermediate hop (see Fig. 6). It is worth
mentioning that node 2 was a netbook, with much less computing
power. During the file transference, we halted the intermediate node
(node 3) to verify that the routing system would self-repair.

As we can see in Fig. 7, at a certain moment of the file transfer
(time¼14 s) the intermediate node (node 3) stops forwarding packets.
When this happens, jOLSR detects this failure via the HELLO messages
sent to node 3 that are not answered. While jOLSR is processing this
new event, some retransmissions are sent from nodes 1 to 3 because
the reliability protocol is still trying to deliver data packets to the old
forwarder. As soon as jOLSR finishes processing the failure of node 3,
two things happen: first, jOLSR recomputes and updates its data
structures (LLIB, NIB, TIB and Routing Table) and sends a Topology
Event to the upper layers. In second place, the protocol propagates this
information via TC messages to all other nodes in the network. Thus,
jOLSR is sure that the neighbors are aware of this topological change.
Fig. 7. MBps retransmitted by the sender and received coming from nodes 2 and 3.
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This process lead to a route recovery time of about 9 s, due to (i) jOLSR
TC and HELLO intervals, (ii) the medium access was shared and (iii)
the Java processing time. The new path is less powerful (via a netbook)
than the previous one. This can be observed in Fig. 7, as node’s 2
throughput is almost the half of node’s 3 throughput, but finally all
the data arrived to the destination node (node 4). As a conclusion, the
middleware is able to recover from node failures and to self-adjust
the routes.

5.4. Test 4: mobility

One of the main challenges for a MANET protocol is to tackle
with topology changes due to mobility. This fourth category of
tests is intended to point out the flexibility of jOLSR for self-
adapting to mobile topologies.

To facilitate user’s mobility we developed an automatic multi-
cast chat application. So, the user could walk while in its node a
multicast message was generated every second. In addition, the
application gave instructions to users in order to induce nodes to
move as Random Waypoint mobility pattern.

The metric used was the Packet Delivery Ratio (PDR). Con-
cretely, we measured the number of received packets over the
total sent from the entire group. This metric is directly related
with the time a node losses connectivity. Obviously, to measure
this metric we had to disable the reliability protocol to avoid
resending lost packets.

Due to the inherent complexity of mobile trials, we decided to
simplify the testbed. On the one hand, we chose a testbed area
without external wireless interferences—from other networks—

which also was a typical MANET scenario: a leafy park (see Fig. 8).
On the other hand, we used a homogeneous hardware (HP NX6125
laptop whose internal wireless card was a Broadcom 802.11b/g).
Furthermore, the node’s wireless card transmission power was set
to 25% in order to reduce its radio range and therefore create hops
between nodes easily (21 dBm provides a radio range of about
111 m in free space and 44 m in a low density forest).

The mobility tests were conducted in four different phases:
�

Fig
rec
Nodes were spread across the area with a distance among them
about 30–50 m. As we empirically tested, this is a long enough
distance for losing the signal of farthest nodes. In consequence,
the routing protocol was induced to create hops and update the
routing table often.
. 8. Mobility test scenario (4137057:40
00

N, 1314056:30
00

E). The play ground was almo

eption was the young forest over the area and the distance between nodes.
�

st fr
Once the nodes were placed correctly, users joined the same
multicast group and each node started to send one multicast

message per second.

�
 People carrying laptops started to walk following the instruc-

tions from the software. These instructions simulated a Random

Waypoint mobility pattern in order to give to the user the path
to follow. The instructions were generated randomly and the
possibilities were: remain quiet or walk in one of four
directions. People walked at a speed of about 1.7 m
per second (6 km/h). In case of obstacles, people could change
direction and speed at their will. The interval between two
instructions was a random value between 5 and 9 s. This led us
to a movement ranges from 8 to 15 m per instruction. Hence,
two nodes could increase its distance in 30 m, enough to
become out of range.

�
 After 90 s, all the software was shut down and all the logs

collected for the future analysis.
In the following subsections we describe three mobility test
scenarios. In the first one all nodes moved according to the
aforementioned mobility pattern, while in the others some nodes
moved and others remained static.
5.4.1. Total mobility topology

This test represents a MANET scenario where all the nodes are
mobile. The nodes were distributed over the test ground covering
about 75% of the defined area (Fig. 8). In consequence, some of the
links between nodes had two hops length.

The objective of this scenario was to test the worst mobility
case, where every node moves and connectivity changes
frequently.

Collected results are presented in Fig. 9. As we can see, the
average PDR is quite positive (about 80%) keeping in mind the
distances between nodes, the wireless card power and the absence
of any kind of reliability protocol. At different points of the test
links were broken and until the protocol’s recuperation, several
packets were lost. This fact represented a 20% of lost packets,
varying for every node according to its location and obstacles
nearby. This results are better than we expected, taking into
account the high mobility.
ee of external wireless interferences. The main handicap for the wireless signal
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5.4.2. Static extremes with central mobility

This test forced the routing protocol to work in a situation
where the nodes’ links were as weak as possible.

Two nodes (nodes 1 and 6) were placed statically at the
extremes of the test area. The rest of nodes were placed in the
middle area, like the previous experiment, but covering the 100%
of the ground. Nodes in the middle zone started to move randomly
as described before. In such scenario, paths of three hops length
were built. Because the signal weakness, the ground extremes’
nodes lost the communication with the group more often than in
the previous test. This can be observed in Fig. 10, where extreme
nodes achieved a 43% PDR. The rest of nodes have also dropped its
performance about a 12%, due to packet loss with nodes 1 and 6.
PDR between central nodes should be the same as in the previous
test. Now we have reduced the mobility and the results are worst,
but this is because we have forced the longest geographical
distance. Nevertheless, path recovery is achieved whenever a node
becomes in range.
5.4.3. Static center with external mobility

In this last test, the majority of nodes were static except one
node—satellite node—which had a high mobility. Therefore many
links were available and working all the time.

The setup was as follows: five nodes were spread statically
conforming a sparse ring shape and occupying almost 100% of the
test area. Every node in the ring had two nodes in radio range. On
the contrary, node 6 moved clockwise outside the ring as a satellite

in order to route messages through a different node frequently.
From the results shown in Fig. 11, we can conclude that

topology changes of the satellite node were done well enough
because its PDR is similar to the other nodes. It is worth
mentioning that PDR variation observed in the different nodes
can be due to trees attenuation and signal weakness. The results
Fig. 9. PDR evaluation in a total mobility scenario.

Fig. 10. Results obtained with static extremes and mobility in the middle area.
obtained in this scenario are better than in the previous one,
because the rotation of the satellite facilitates a rapid recuperation
through the next neighbor, while a random walk can isolate fixed
nodes during longer periods of time. When comparing to the first
mobility test, results are worse (average PDR of 70% versus a PDR
of 80%). There are two main causes: (i) in the first test nodes
covered about 75% of the test area, and (ii) every node moved
randomly and therefore nodes remained randomly spread through
the test area, reducing chances to lose coverage.

We can conclude that the three mobility tests demonstrated
the feasibility of MChannel in mobile scenarios. This complete
validation of the middleware has proven its fault tolerance and
adequate performance numbers in both static and mobile tests.
Applications received a good service and topology information but,
as pointed out in the architecture description, it has some cost. So,
in the following section we analyze in more detail the overhead
and performance of routing at user space compared with routing
at network layer.
6. Routing layers comparison

In this section, we evaluate some aspects of our routing
protocols (jOLSR and OMOLSR) and we compare experimentally
and analytically some important metrics against their natural
counterparts (OLSRd and MOLSR). The aim of these tests is to
compare the user space routing with the network level routing in
terms of overhead and throughput.

6.1. jOLSR versus OLSRd

In our middleware we have moved the routing logic to the user
space. Therefore, an exhaustive and detailed comparison with a
network layer protocol as OLSRd is compulsory. Regardless there
are a plenty of metrics that are used for measuring different
aspects of a protocol performance, we focused our efforts in three
main metrics: Average Packet Size, Average Bandwidth Consumptio-

n—overhead tests—and throughput—performance tests. All the
experiments were done exactly equal for OLSRd and jOLSR in order
to compare fairly and obtain determinant results (see Fig. 12).

Test Hardware. Each node in the network was an HP NX6110
laptop. The internal wireless card was an Intel PRO/Wireless
2200 BG card for IEEE 802.11b/g. During the experiments, wireless
cards on laptops were set to channel 1 at the 802.11b/g band, using
auto rate (54 MBps), transmission power 1 dBm and RTC/CTS off.

Test Software. All nodes used Ubuntu 9.04 as Operating System.
We configured the IPTables firewall of this O.S. to create virtual
low-level hops, so that messages of nonvirtual neighbors were
dropped by the firewall working below the routing protocols. The
objective of these virtual hops was to create a controlled and
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Fig. 12. Protocol placement of our experiment. All tests were executed from JGroups in order to obtain the same software overhead.
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defined topology without placing physically the computers far
from each other. OLSRd version used was OLSRd 0.5.6-r5. We also
used MChannel over JGroups 2.5.2 and Java 6 Runtime Environ-
ment. Finally, we used Wireshark to monitor and capture all the
network traffic and we compared its captures with our own logs.
Fig. 13. Average Bandwidth Consumption overhead of OLSRd and jOLSR as the

number of nodes increases.

Fig. 14. Average Packet Size of OLSRd and jOLSR as the number of nodes increases.
6.1.1. Protocol overhead test

This test consisted of capturing and logging the traffic
generated by the MANET protocols and without any other
application traffic. We increased the number of members involved
into the group progressively. In order to ensure the results
reliability each test was repeated twice. The duration of each test
was also the same for all tests, being 1 min the selected test
duration. This time is long enough to interchange several control
packets.

There are two analyses about the protocol overhead: the first
one illustrates the bandwidth required in order to maintain the
group communicated (see Fig. 13) and the second one describes
the growth in size of control packets related with the group size
(see Fig. 14).

In Fig. 13 it can be observed that the jOLSR’s bandwidth
consumption is higher than that of OLSRd. The growth observed in
OLSRd’s bandwidth consumption is irregular but lower all along
the experiment compared with our protocol. jOLSR maintains in
its bandwidth consumption a linear growth with an initial
overhead higher than OLSRd. The jOLSR’s overhead ranged from
4.4 (2 nodes) to 1.7 (10 nodes) times higher than OLSRd. In other
words, when the number of nodes increases, the difference is
reduced drastically. In reference to the previous fact, we foresee
that the bandwidth consumption differences will get smaller as
the group becomes bigger.

We must take into account that the difference between both
protocols is less than 1.3 kB/s in the worst case. If we consider that
in an 802.11b/g wireless card it represents from 0.02% to 0.1% of
bandwidth consumption for jOLSR (depending on the transmission
rate), we conclude that this extra overhead can be assumed. Recall
that this slight extra overhead is the price to pay for providing a
plenty of high level services to the top level applications.

Packet size metric is another way to measure protocol over-
head (see Fig. 14). It is useful in order to know whether control
messages grow in a scalable way when the group becomes bigger
or not.
In Fig. 14 we can see a noticeable difference between the
default (1 node) communication packet sizes of both protocols.
The explanation is easy: MChannel’s architecture needs more
headers—Application Layer, JGroups Protocols—in order to
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encapsulate a single packet. The average difference between both
protocols is approximately 2.7 times higher the size of the jOLSR’s
control packet than the OLSRd’s one. As before, a strength of jOLSR
is that this difference gets smaller while the number of nodes
grows. It means that membership information is efficiently
managed. Again, as in the previous analysis, in the context of
nowadays wireless networks, a difference of almost 200 bytes in
each packet—in the 10 nodes case—does not represent a
considerable overhead. Specially, if we consider the benefits for
upper layers and protocols.

6.1.2. Throughput test

This test consisted of monitoring and measuring the amount of
user information per second that both protocols were able to send.
This test extends and complements the test in Section 5.2.
Nevertheless, in this test was used a hardware homogeneous
scenario—without a bottleneck node.

For this second test we defined one of the most difficult
topologies to maintain the bandwidth: the in-line topology.

The user application transferred a 20 MB file to a certain
destination node measuring the achieved throughput. The men-
tioned destination node was further—increasing number of
hops—each time. This suffices to stress the protocols and to
achieve their maximum performance. The results obtained with
both protocols are represented in Fig. 15.

The performance difference between jOLSR and OLSRd is not as
bad as could be expected from a priori theoretical prediction, due
to the Java execution overhead and user space routing. The
average difference in throughput is �18.5%—on average
170 kBps—for jOLSR compared with OLSRd. However, from this
experiment we can conclude that the throughput reduction is
somewhat affordable. Furthermore, with the obtained results we
can ensure that our middleware is able to provide a good service
to a wide range of collaborative applications.

As expected, jOLSR introduces more overhead than OLSRd does,
but this is not really significant to the available bandwidth. This is
corroborated by the fact that differences in throughput are low.
We assume that the mentioned drawbacks are the price to pay for
providing a set of high level services to client applications.

6.2. OMOLSR versus MOLSR

One of the main goals of our middleware is the topology
awareness of all layers above the routing protocol. For this reason,
we developed OMOLSR as the default application level multicast of
MChannel. OMOLSR is intended to manage efficiently multicast
groups without any additional control messages overhead, just
taking advantage of the topological information from jOLSR. This is
possible because both are placed at application level.
Fig. 15. Average throughput comparison.
In this section we evaluate analytically how MOLSR would work
in the Application Level as it is defined in Jacquet et al. (2001). This
example will give us an argument strong enough for considering
OMOLSR as a good choice in order to give multicast communication
in our middleware. Again, the main objective of this evaluation is to
point out and prove the motivation for creating OMOLSR and
reasoning why it is suitable for our architecture.

Simple Flooding and MPR Flooding Strategies. As is deeply detailed
in Qayyum et al. (2002), the MPR Flooding Strategy reduces

drastically the number of control messages sent and outperforms
in many other metrics the Simple Flooding Strategy. Although this
fact demonstrates that MOLSR is more efficient than SMOLSR, in our
opinion the amount of control messages sent by MOLSR could be
avoided using a multicast protocol that benefits directly of the
topological information given by the routing protocol.

Assumptions:
�

Fig
mu
All nodes of the hypothetical topology are multicast capable
with one wireless card per node.

�
 The number of messages that we will count for the multicast

behavior is the theoretical for the Application Level. It means
that there is not real multicast: each multicast data packet
forwarded is split into unicast packets, corresponding to the
forwarder’s children.

�
 In order to reduce the complexity of the example we suppose just

one multicast group in the network whose source is the root.

�
 If both protocols create the multicast tree correctly, we can

assume that the cost in messages for delivering a multicast
data message is the same for both at the Application Level.

�
 The hypothetical topology (Fig. 16) is defined as follows: the

tree has as root the source node which relies in its own MPR.
From the first MPR onwards, the tree grows regularly being a
group of four nodes (2 MPR and 2 Not MPR) the set of nodes
which each MPR is responsible for.

Given a protocol which relies in the MPRs for flooding the
network, we can define that the overall number of messages
needed for disseminate a message to the whole network is:
fMPRBroadcast:
X

lA L

jMPRðlÞj

where L represents Levels of the topological tree and MPR(l)

represents MPRs for the tree level l.
Note that in the case of the hypothetical topology of Fig. 16 the

overall number of messages needed to send a broadcast message
through tree levels grows binary exponential.
. 16. Hypothetical topology used in order to exemplify the behavior of

lticast protocols.
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Given a network which contains a set of multicast members
joined to a group, the overall number of messages needed for
delivering a single multicast message to the entire group is:

fMulticast:
X

lAL

jGMðlÞj

where GM(l): Multicast Group Members (participants or subscribers)
for the level l.

MOLSR and OMOLSR use the multicast tree generated for
delivering the multicast messages to the entire group efficiently.
Fig. 17 represents the overall amount of messages generated in
order to deliver a multicast message depending on the percentage
of subscribers. Furthermore, this graphic represents the worst case
possible for the multicast data delivery in a network structured as
Fig. 16: the subscriber nodes are not MPR as possible and
homogeneously distributed in the network.

MOLSR uses flooding in order to deliver two types of control
messages (mc_claim and source_claim) which are described in the
protocol’s definition. Moreover, MOLSR also needs to send messages
periodically in order to receive the confirmation of the children
nodes which still being part of the multicast tree (parent_confirm)
for building it. This kind of messages has the same bandwidth
consumption than sending a multicast data message. Finally, we
can define the overhead in messages that MOLSR generates for
building and maintaining a single multicast tree as follows:

fOverhead In Messages ¼ ðfMPR Broadcast � 1=t1 � mÞþðfMPR Broadcast � 1=t2Þ

þðfMulticast � 1=t3ÞþððfMPR Broadcastþ fMulticastÞ � aÞ

where
1/t 1:
Fig. 17. A

multicast

nodes giv
Frequency of mc_claim broadcasting in function of period t1.

1/t 2:
 Frequency of source_claim broadcasting in function of period t2.

1/t 3:
 Frequency of parent_confirm multicast sending in function of

period t3.

a:
 Number of topology changes triggered by OLSR

which implies a source_claim + confirm_parent messages

sending.

m:
 multicast capable nodes.
Fig. 18. First case where the timers are long and there are not topological changes

in the network.
We use the above definition of fOverhead In Messages as a metric to
count the number of control messages generated by the protocols.

With the previous definitions we can evaluate the hypothetical
behavior of MOLSR multicast protocol. We depict different
mount of messages sent through the network in order to deliver a single

message depending on the percentage of subscribers and the number of

en a topology as Fig. 16.
parameterizations of frequencies and number of topology changes
in Figs. 18–20 using the settings specified in Table 1. The metric
represented is the calculation of the overall messages sent into the
network classified by message type.

As we can observe in Figs. 18–20 the proactive nature of MOLSR
has a non-negligible overhead in messages across the network.
The amount of control messages sent by MOLSR depends specially
on the parameterization of the protocol and the timers (t 1, t 2,
t 3). In all three figures OMOLSR Data and MOLSR Data (first two
columns to the left) remain the same and are a good reference.
Keeping in mind that this overhead is calculated just for
building and maintaining one multicast group, we observe that
source_claim and confirm_parent messages would grow linearly
depending on the number of nodes.

On the other hand, Fig. 20 shows that when a group becomes
bigger and the timers are short to improve the multicast
information convergence, the amount of control messages sent
through the network is quite high (about 15,000). This means that
the number of mc_claim messages has grown up 4 times, being
this number higher than the number of data packets, almost 3
times higher. It is very important to keep in mind that in wireless
networks medium access is shared and is a real bottleneck.
Fig. 19. Second case where the timers are shorter and there is one topological

change.
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Fig. 20. Worst case: the timers are the shortest parameterized and there are three

topological changes.

Table 1
Evaluation settings.

Parameter Fig. 18 Fig. 19 Fig. 20

Execution time (s) 60 60 60

Data messages 50 50 50

Topology changes (a) 0 1 3

Subscribers percentage (%) 50 50 50

mc_claim period (t 1) (s) 40 30 20

source_claim period (t 2) (s) 30 20 15

confirm_parent period (t 3) (s) 20 10 5
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Although mc_claim messages are much shorter than data packets,
but to access the medium to send these short messages can cause
a deep drop in available throughput.

Obviously, OMOLSR needs information in order to build its
multicast tree. The membership information of all nodes is
attached in each jOLSR TC message and it is disseminated
periodically. Regardless this approach has an extra data overhead,
the growth of the control packet size depending on the number of
nodes is absolutely affordable as is shown in Section 5.1.

It is noticeable the fact that while the amount of MOLSR control
messages grow linearly depending on the number of groups, the
number of TC messages does not. This is so because the growth of
the TC message depending on the number of a node’s groups adds
few bytes for each group joined: just the size of the group
identifier. The computation of the multicast tree in OMOLSR is
done by an implementation of the Dijkstra’s algorithm. This
algorithm is widely used in link-state routing protocols. The CPU
overhead that OMOLSR generates in order to calculate the
multicast tree in a MANET group is not significant. Nevertheless,
the OMOLSR overhead is not just for building a multicast tree with
a partial view of the network. The fact that the membership of
each node is attached in the TC messages implies that each node

has a complete view of the network. This is a high level service that
could be used by the top level applications.
7. Conclusions

A MANET middleware with dependencies in the kernel space
(cross-layering) cannot be easily ported to heterogeneous envir-
onments. The main argument of this paper is, thus, to move the
routing protocols to the user space to simplify the development,
testing, deployment and portability of middleware and applica-
tions. In particular, we extended a popular group communication
toolkit (JGroups) to support MANET settings. We implemented a
Java version of the OLSR protocol (jOLSR) and a novel multicast
protocol (OMOLSR) that benefits from jOLSR. Furthermore, we
created a MChannel group communication abstraction where
group membership is obtained from multicast membership
information and failure detection from jOLSR probing. Our Java
middleware provides complete portability and simple develop-
ment of collaborative MANET applications.

To evaluate the feasibility of our approach we have performed
an extensive validation of our middleware in real testbeds. More
concretely, we measured the throughput, fault tolerance, mobility
and overhead of our middleware. We obtained reasonable
throughput numbers of 1 MBps (two hops) or 600 kBps (three
hops) for our Java middleware. We also obtained good Packet
Delivery Ratios (close to 80%) and strong resiliency in mobile
scenarios. As we can see, in MANET networks the throughput
considerably decays with the number of hops. If applications
ignore the topology and just broadcast information, they can really
harm the overall performance of the network. For this reason, we
believe that many MANET applications require topology-aware-
ness in order to optimize their data transmissions.

The performance penalty paid by the Java middleware is thus
justified for the portability and easy deployment of applications.
The throughput results make our approach feasible for a wide
range of applications like spontaneous collaboration, interactive
games or context-based and location-based services. In particular,
our approach will be specially interesting in the following years
when mobile terminals like smart phones with wireless con-
nectivity will be widespread. The heterogeneity of these devices
will require portable solutions for infrastructure-less communica-
tions. As future work we plan to make jOLSR energy-aware and
thus supporting the constraints of mobile terminals.
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