
Topology-Aware Group Communication Middleware for
MANETs

Pedro Garcia Lopez, Raul Gracia Tinedo,
Marc Espelt Palau

Universitat Rovira i Virgili
C/Escorxador S/N

43003 Tarragona, Spain

pedro.garcia|marc.espelt@urv.cat

Roc Messeguer
Universitat Politcnica de Catalunya

C/Jordi Girona, 1-3
08034 Barcelona, Spain

messeguer@ac.upc.edu

ABSTRACT

We believe that any MANET middleware should be aware of the
underlying multi-hop routing protocol to improve communication
efficiency. In general, existing MANET middleware either ignore
the underlying routing protocol or create specific cross-layer
solutions that break the strict layering of the network stack. This
problem is even more severe in the case of traditional group
communication middleware (GC) where membership protocols,
failure detection mechanisms or flow control layers can
considerably harm the overall performance of the network.

We propose to move the routing logic to the application layer in
order to achieve a smooth and clean integration between the
middleware and the underlying MANET topology.

In this line, we have modified a well-known GC toolkit (JGroups)
in order to adapt membership protocols, failure detectors and flow
control mechanisms to the underlying MANET topology. We
have implemented the MANET OLSR protocol in the application
layer using UDP (jOLSR). On top of it, we have developed an
overlay Multicast protocol (OMOLSR) that directly benefits from
the OLSR protocol to improve communication efficiency. As a
consequence, in our middleware group membership is obtained
from OMOLSR, failure detection from the jOLSR protocol, and
our modified flow control protocol benefits from jOLSR topology
information. We validate our approach in a real test-bed to
demonstrate the feasibility and efficiency of our middleware.

Categories and Subject Descriptors

C2.4 [Distributed Systems] Distributed Applications

C2.2.[Network Protocols] Routing Protocols

General Terms

Reliability

Keywords

Group Communication, Mobile Adhoc Networks, Middleware

1. INTRODUCTION
Mobile Ad-Hoc Networks (MANETs) represent an interesting
substrate for many types of applications that do not require a fixed
network infrastructure (Access Points). When every participant is
a routing node in the network, several interesting multi-hop
scenarios may arise. For example, spontaneous collaborative
applications are of particular interest for settings where many
users can interact with close-by participants (conferences, campus,
stadium, popular events, city, and games). In these settings, it is
very important for MANET middleware and applications to be
aware of the underlying routing protocols and topology. If the
middleware just uses the underlying transport protocol as a black
box, it can incur in communication inefficiencies due to the multi-
hop nature of the medium.

This problem is more severe in the case of traditional GC toolkits
working over IP multicast like Ensemble or JGroups. Such
toolkits provide message reliability and ordering, group
membership, failure detection and flow control among other
functionalities. But they are not designed for multi-hop
environments and they can really incur in a strong overhead for
the underlying network. These toolkits cannot just work
transparently over a MANET multicast protocol due to their
current design.

A typical solution has been to implement cross-layer solutions
enabling the construction of more efficient middleware (using
topology information). However, we believe that this approach is
flawed because it implies dirty ad-hoc hacks that break the clean
network layering model. These approaches solve specific
problems but are difficult to port or adapt to different scenarios.

We believe that in this setting is completely justified to move the
routing logic to the application layer. In fact, peer-to-peer
technologies are a classic example of moving routing logic to the
application layer. In this line, content distribution networks or
application layer multicast are peer-to-peer technologies created
to overcome the limitations of the transport layer. In the case of
MANET settings, there exist several reasons to move the routing
logic to the application layer:

• Clean interaction between middleware and routing layer

• Flexibility and adaptation to specific requirements

• Simplicity of development, testing and deployment

• Topology-Aware overlay

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
COMSWARE’09, June 15th - 19th, 2009, Dublin, Ireland.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

In the context of the European project IST-POPEYE (Peer to Peer
Collaborative Working Environments over Mobile AdHoc
Networks), we developed a Java implementation of the OLSR
protocol using UDP sockets (jOLSR). To address the group
communication issues of the collaborative middleware, we have
created OMOLSR, an overlay multicast channel that directly
benefits from the jOLSR routing protocol. Finally, using jOLSR
and OMOLSR we have modified an existing group
communication middleware (JGroups) to support MANET
settings.

In particular, group membership is obtained from the OMOLSR
protocol, failure detection from the jOLSR protocol, and our
modified flow control protocol benefits from jOLSR topology
information. We will demonstrate by simulation and in a real test-
bed that the system is communication efficient and that it benefits
from the knowledge of the underlying topology.

The structure of this paper is as follows: in section 2 we present
related work, then in section 3 we present some design decisions
and in section 4 we describe the overall middleware architecture.
In section 4 we present validation results using both simulation
and experimentation, and finally we draw some conclusions in
section 6.

2. RELATED WORK
It is widely accepted in MANET settings that cross-layer solutions
are required for achieving performance and adaptation in many
scenarios [1],[2],[3]. Nevertheless, many researchers also
recognize that strict layering enables controlled interaction among
layers (each layer is independent developed and maintained).
Besides, many cross-layer solutions generate spaghetti-like code
that is impossible to maintain efficiently because unexpected
dependencies between layers may arise.

To avoid this coupled cross-layer solutions, authors in [1]
proposed a vertical component named Network Status that would
avoid nasty inter-layer communication. All the layers (MAC,
Network, Transport, Middleware and Application) would then
communicate directly with Network status and thus avoiding
direct coupling between layers. This design is more elegant than
the classical cross-layer solutions but still face important
problems. On the one hand, it is not a standardized operating
system component so it is difficult to port and maintain. The
community should agree to such transversal solution with an open
standard. This is clearly difficult to achieve in the short term. On
the other hand, network status seems appropriate for offering
information between layers, but not as a clear medium for upcalls
and downcalls. In specific settings, a tight coupling between some
layers can be even desirable to achieve optimal performance.

If we focus in the middleware and application layers, it is also
obvious that cross-layer solutions clearly present better
performance. Both [4] and [5] modify existing peer-to-peer
middleware (FreePastry, Gnutella) to benefit from a cross-layer
communication with underlying MANET protocols. It is quite
clear that if middleware ignores the underlying topology, it can
even hurt or degrade the overall performance of other nodes. In
conclusion, we can summarize the existing approaches to cross-
layer in the following groups: including information in packet
headers, using the Internet Control Message Protocol, offering
device or kernel ad-hoc connections, creating transversal

components for all layers [1], standardizing interfaces and
loopback addresses [6], or even allowing direct signaling among
layers [7]. Even some projects have considered a complete
rethinking of the network stack for MANET environments [8].

As we will explain in the following sections, our approach for
MANET middleware is simpler: moving the routing logic to the
application layer. This is probably not a solution for all kind of
problems and we neither aim to replace existing transport layer
MANET protocols. But we will explain how this simple solution
can be appropriate for many scenarios where cross-layer
information flows are required by middleware and applications.
In fact, other research works in MANET middleware already
followed this approach. In [9] authors present COMAN, a
protocol to organize the nodes of a MANET in a tree-shaped
network providing content-based routing functionalities. COMAN
is implemented at the application layer and it benefits from
topology information to self-repair and reconfigure the
middleware. In [10] authors also present a content-based
publish/subscribe system for MANETs that extends the ODMRP
(On-Demand Multicast Routing Protocol) to construct an
optimized dynamic dissemination mesh. Authors in [10] stress the
importance of cooperation between the middleware-tier and
network components.

Regarding GC services over MANETs we must outline two
research works: JazzEnsemble [11] and MobileMan [12]. The
authors of JazzEnsemble specifically addressed the problems of
developing a GC middleware over MANETs. They studied in
diferent works [11],[13],[14] problems regarding group
membership protocols, failure detection and flow protocols over
MANETs. They devised lightweight membership protocols based
on fuzzy membership and Random Walks, gossip-based failure
detection protocols, and they also adapted flow protocols to
MANET environments. Nevertheless, they did not construct their
GC primitives (membership, failure detection) over standard
MANET unicast and multicast routing protocols (OLSR,
OMOLSR) like us. As we will explain later, our decision entails
important communication savings.

Finally, in [12], authors constructed very basic GC services with
their cross-layer solution based on Pastry Distributed Hash Table
(DHT) and Scribe Application Layer Multicast over the OLSR
MANET protocol. They did not specifically addressed problems
like membership, failure detection or flow control and their
proposal was mainly a prototype. Furthermore, it is questionable
if Distributed Hash Tables are the right solution for a reduced
MANET setting. Furthermore, the Scribe multicast protocol is not
designed for MANETs, like other MANET multicast protocols
(MOLSR, OMOLSR). It is obvious that Pastry and Scribe will
then generate more communication overhead than native MANET
protocols like OLSR or OMOLSR.

3. DESIGN DECISSIONS
Before delving into our main technical contribution, we first
justify our decision of moving routing logic to the application
layer, and then we explain the design decisions behind the chosen
unicast and multicast routing protocols.

3.1 Advantages and drawbacks of

application-layer MANET routing
The idea of moving routing logic to the application layer is not
new. The peer-to-peer paradigm is frequently used to overcome
the limitations of the transport layer. For example, Application
Layer Multicast (ALM) solutions have emerged due to the
problems with IP multicast in the Internet. ALM solutions create
overlay topologies that permit efficient one-to-many
communications using unicast transport communications. One of
the major issues with these overlay networks is to correctly reflect
the underlying topology to be efficient in terms of latency. In this
line, the routing latency between two nodes on the overlay
network can be different from the unicast latency between those
two nodes on the underlying network. The ratio of these two
quantities is called the latency stretch. If this ratio is high, there is
a considerable penalty in using the overlay. In fact, it is still an
open problem in peer-to-peer research to create topology-aware
overlays.

Hereafter, we will present the main advantages of our approach:

Topology-Aware overlay. In MANET environments, nodes are
connected in a peer-to-peer network created in the transport layer
using protocols like OLSR, AODV or DYMO. If we just move
these protocols to the application layer (OLSR for example), the
topology does not change. The application layer peer-to-peer
network will then reflect exactly the physical connections.
Furthermore, the application layer protocol will route packets
using UDP unicast connections in the same way that the transport
protocol would operate. This is a remarkable advantage of
MANET application layer routing and avoids many problems
found on Internet topology-unaware overlays.

Clean interaction between middleware and routing protocols.
When MANET routing is just another middleware component we
can use well-established software engineering practices to specify
module interaction. With standardized APIs in the application
layer it is not necessary to break the strict layering of the network
stack for MANET middleware.

Flexibility and adaptation to specific requirements. Different
applications may have completely different requirements for the
routing layer and underlying topology. If it is a matter of changing
a software component, it is feasible to develop specific adaptive
routing layers for different settings. Emergency scenarios, military
applications or collaborative work settings may develop specific
underlying routing components adapted to their particular
scenarios.

Simplicity of development, testing and deployment. It is easier
to develop and test routing protocols in the application layer than
in the transport layer. The middleware can be created
transparently from the operating system and thus simplifying
kernel compilation, library dependencies and hardware settings.
Furthermore, the key point is easy deployment and portability to
different platforms. Mobile phones could easily install an
application that creates its own MANET adapted to its specific
requirements. It is far more difficult to motivate users to install
new transport protocols.

On the contrary, we find these major drawbacks:

Specific routing service. At the time present, our approach does
not offer a generic service for all the applications running in a OS
(like transport protocols do). Only the application using this
middleware will benefit from the MANET routing services. If we
have for example existing videoconferencing or desktop sharing
tools using standard transport protocols, they won’t be able to
benefit from our middleware. In any case, this problem could be
solved in the same way that IP over Peer-to-Peer Networks
(IPOP) are working today. If necessary, the middleware
component could then even provide standard transport level
services to legacy applications.

Lower Layer interconnection. We do not address the problem of
interconnecting lower layers like Physical, MAC, network and
transport. In those cases it could be necessary that the community
agreed on a standardized component or interlayer protocols. In the
case of our middleware, it would be also possible to access
specific OS, device or driver APIs to improve the performance of
the middleware. Of course, this would make the middleware less
portable and transparent, but it could be necessary for specific
solutions.

3.2 MANET Protocols

Here we include a brief summary of recent unicast and multicast
protocols considered in our design. Concerning unicast protocols,
we considered two recent protocols (one reactive and one
proactive):

DYMO (Dynamic MANET On-Demand) [15] is a reactive unicast
protocol, successor of the popular AODV (Ad-Hoc On-Demand
Distance Vector) and shares many of its functionalities. Routes
are created on-demand by sending request and response control
packets. In consequence, no global topology information is
available. On the other hand, this means that when nodes stop
sending messages, there is no overhead traffic in the network.
DYMO seems more suitable for sparse communications, but may
not work as well in case of congestion.

OLSR [16] is a proactive unicast protocol, so it maintains routing
table information up to date continuously. Topology information
is exchanged by means of controlled flooding of topology
messages (TC messages). Hello messages provide information
about the two-hop neighborhood in a way that each node selects a
neighbor as MPR (Multi-Point Relay). These MPRs are in charge
of sending topology messages to the entire network performing
controlled flooding. With the topology information, each node
can build the routing table in order to be able to send messages to
the other nodes. OLSR performs well in small-medium sized
networks where node density is relatively high. The knowledge of
the topology, together with its good performance with dense
communication patterns turns OLSR in a good candidate for
performing group communication in MANETs.

Concerning MANET multicast protocols, we also evaluated
several network multicast and application level multicast
protocols. Let us compare the more important systems studied:

ALMA (Application Layer Multicast Algorithm) [17] creates a
tree of logical links between the group members. The aim of this
protocol is to reduce the cost of each link in the tree by
reconfiguring the tree under mobility and congestion situations.
When a node joins the network it must select a node as a parent,
so as to become part of the tree. If tree performance drops below a

defined threshold, the node must reconfigure the tree by switching
the parent or freeing children. This mechanism leads to a complex
loop avoiding and detection system, since synchronous switching
can occur. ALMA also considers the existence of a rendezvous
host for obtaining the structure of the logical tree as well as
neighbor information in the bootstrapping process.

PAST-DM (Progressively Adaptive Subtree in Dynamic Mesh)
[18] is an overlay multicast protocol based on the construction of
a dynamic virtual mesh. The mesh is maintained dynamically
through the exchange of link state packets, thus adapting to
network topology changes. These packets provide link state table
information, that is, a partial view of the network. With the
topology information extracted from the mesh, nodes compute a
source-based Steiner tree to deliver information to all members in
the multicast group. Logical and physical hop distances are used
as heuristics to compute the Steiner tree. Each child of the source
tree is responsible for delivering the multicast message to all
nodes in the subtree. This process is repeated through every
node until the subtree becomes empty. The decision of packet
delivery path is computed at each receiver, so path selection is
performed always with the most up-to-date information. Although
this is an efficient way of delivering data, some packets may be
lost if nodes change location, once the source node has computed
its corresponding subtree.

In conclusion, both protocols, as most application level protocols,
need to send control packets to keep their structures up to date:
using periodic exchange of link packets or communicating with
other nodes in the tree. In both cases, the protocols ignore the
underlying unicast network routing protocol so they perform
redundant communication and, in consequence, bandwidth
misuse.

Because our group communication middleware must provide both
unicast and multicast services, we believe that it will be optimal to
use multicast protocols that benefit from the OLSR unicast
protocol. This leaves us with two main protocols: SMOLSR and
MOLSR:

SMOLSR (Simple Multicast OLSR) is a straightforward multicast
protocol that simply floods the network using the OLSR
Multipoint Relays (MPR). Since this protocol does not build any
tree, all the nodes receive all the messages even if they are not in
the multicast group. Hence, SMOLSR is not efficient for multi-
group networks although it does not send any control message to
the network. MOLSR (Multicast extension for the Optimized Link
State Routing protocol) [19] is a multicast routing protocol for
MANETs designed to work in top of OLSR nodes. It is a source
tree based protocol that maintains one multicast tree per tuple
(source, multicast group). This stateful protocol provides
multicast routing that benefits from the topology knowledge of
OLSR (MPRs). Although MOLSR is an interesting
alternative, we finally decided to design our own application level
multicast tailored for group comunication on top of OLSR. We
will further explain our OMOLSR protocol in the following
section.

4. MCHANNEL: A TOPOLOGY-AWARE

GROUP COMMUNICATION

MIDDLEWARE FOR MANETS
Instead of constructing an entire GC toolkit from scratch we
decided to modify a well-known Java toolkit like JGroups [20].
JGroups is a toolkit for reliable multicast communication that
offers a JChannel abstraction providing group membership
(methods to connect, disconnect, and obtain the current members
of a group), methods to send messages to one or to all members in
a group, and event listeners about the channel state (member
joins, leaves and received messages). Furthermore, JGroups offers
a flexible protocol stack with many existing protocols for group
membership, failure detection, flow control, fragmentation of
packets, and message ordering and reliability over IP multicast.

Our MChannel abstraction extends the JGroups JChannel to
incorporate the information from the underlying MANET
topology. As depicted in Figure 1, the multi-hop channel
(MChannel) uses both unicast and multicast functionalities
provided by the two underlying protocols: jOLSR and OMOLSR.
In first place, OMOLSR computes multicast routing thanks to the
information received via events coming from jOLSR. These
events allow OMOLSR to update the OMOLSR Network Graph
(ONG), which will be used for routing computation as well as for
providing membership information. As we can see, both jOLSR
and OMOLSR have been integrated as standard protocols in the
JGroups stack.

Figure 1. Middleware architecture

To explain the overall architecture, we will proceed now bottom-
up: we will first describe our jOLSR unicast MANET
implementation, then the OMOLSR overlay multicast, and finally
the services provided by the GC toolkit (MChannel).

4.1 JOLSR

jOLSR is an application level implementation of the OLSR
routing protocol [16] written in Java. Of course, the goal of
jOLSR is not to be a fully compliant implementation of the
standard, but an implementation which follows its basic
functionalities. In any case, jOLSR implements nearly all
components of the core functionality of OLSR. Although the core
functionality also includes support for multiple interface
addresses, this feature is not provided in the current version of
jOLSR in order to simplify the implementation.

jOLSR stores network information in different tables similarly to
OLSR specification: Neighborhood information base (NIB) stores
neighbor information; Local Link Information Base (LLIB) keeps
updated information about the state of links to the neighbors;
Topology Information Base (TIB) maintains information of the
network topology to perform routing calculation.

Some modifications have been added to the basic specification of
OLSR to provide topology and group membership information to
the upper multicast protocol. The multicast protocol, OMOLSR,
will benefit from this information in order to avoid flooding the
network with unnecessary control packets. The main changes are
the following:

• TC messages now include a list of multicast groups that
are joined by the sending node.

• A new table called Multicast Groups Table stores the
information about multicast groups received in TC
messages. With this information, a partial representation
of the network, similar to a graph, is computed when a
change is detected in the different tables.

TC Message Modification. OLSR and jOLSR send two different
types of control messages, HELLO and TC (Topology Control)
messages. HELLO messages permit a node to know its one-hop
and two-hop neighbors, since each node sends information about
its local neighborhood. Based on this information, the node can
select its multipoint relays (MPR) which will be in charge of
performing controlled flooding. TC Messages are sent to all the
nodes in the network thanks to this controlled flooding
mechanism, and disseminate topology information of the local
node to all nodes in the network.

In both OLSR and jOLSR, TC messages are sent periodically
from one node to the rest of the network, so all nodes can
compute its topology table. We have realized that by adding little
information in TC messages, we can disseminate information
easily to all nodes in the network. This is in fact really useful
since the multicast routing protocol needs information about the
multicast groups joined by each node.

Figure 2. TC message modification

Therefore, we propose to attach the multicast address of the
groups joined by the local node in TC messages, as we can see in
Figure 2. The attached information about the groups is retrieved
from the multicast group table.

Multicast Group Table. The Multicast Group Table keeps the
information about the multicast groups joined by each node. This
information is updated when the local node decides to join a new
group or when it receives a new TC Message. The table keeps a
set of the joined multicast groups for each node in the network.
The information in this table is used by the upper multicast
routing protocol and changes in the table are reported as
membership events to the application. When a change is detected
in the neighbor table, in the topology table or in the multicast
groups table, a graph containing the members of the group is
computed. The multicast protocol will receive a new event with
the information of this graph.

In order to calculate the graph with the members of the group, we
obtain an approximate representation of the network by creating a
network graph from the information stored in the topology table.
Then we check in the Multicast Group Table which nodes belong
to which group, so we create an event for each different group in
the table. The graph can then be used by the multicast protocol for
retrieving updated membership information.

4.2 OMOLSR

OMOLSR (Overlay Multicast over OLSR) is a new application
level multicast routing protocol, designed to work on top of
jOLSR. OMOLSR computes locally minimum spanning trees by
benefiting from the topology information gathered by jOLSR. The
main characteristic of OMOLSR is that it does not need to send
additional control packets to perform multicast delivery. The
unicast routing protocol already provides all necessary
information. Besides, this application level multicast protocol is
designed for group communications because it benefits from its
close interaction with the undelying unicast protocol (jOLSR) to
provide a lightweight membership protocol.

Basic Operations. The basic operations of OMOLSR are the
dynamic computation of the Minimum Spanning Tree and the
routing of multicast packets. In first place, OMOLSR computes a
virtual mesh that connects all members of the multicast group.
This mesh is a contraction of the network graph that jOLSR
generates from the Neighbor Table and the Topology Table. By
using this contracted graph, which contains only the members of
the group, the local node can easily know which members are
located at one hop in the membership. These nodes located at one
logical hop are also known as virtual neighbors of the local node.
The procedure of computing the contraction of the graph is
performed for each multicast group the local node is member of.

Then, once the graph is ready, we compute a minimum spanning
tree with the local node as the source of the tree, as depicted in
Figure 3. The tree will now be used for routing the packet to all
the members of the group.

Figure 3. The spanning tree for the node A. Colored nodes

belong to the multicast group. Edges

Multicast routing. In order to route multicast packets, OMOLSR
uses an explicit multi-unicast scheme. When the application
generates a new multicast packet, OMOLSR routes the message
based on the tree computed for that multicast group. A copy of the
packet is sent to each virtual neighbor, which is responsible for
delivering the message to a certain subset of nodes. This subset is
defined in each node by using the source-created tree and consists
of all the nodes that are in the subtree of each virtual neighbor.

This information is then attached to the header of the data packet.
When the virtual neighbor receives the message, it computes a
tree with the subset of nodes contained in the header. Again, it
sends a copy of the data message to its virtual neighbors with new
header content. The process is repeated until the subset which
must receive the message is empty.

Reliability and integration. In order to ease and clarify the
development of both jOLSR and OMOLSR, we have extended an
existing toolkit for reliable communication: JGroups. The key
feature of JGroups is its flexible protocol stack, which can be
configured and extended depending on the communication needs.
Each protocol in the stack provides different functionalities:
ordering, reliability, membership, state transfer, etc. In our case,
we have implemented both routing protocols (jOLSR and
OMOLSR) as JGroups protocols so we can benefit from unicast
reliability and ordering by adding the UNICAST protocol to our
stack. This unicast reliability layer uses an acknowledgement
scheme to provide lossless transmission of unicast messages.
Therefore, multicast reliability is also ensured by adding this layer
between both protocols: OMOLSR splits each multicast packet in
several unicast packets that will be sent under the
acknowledgement scheme.

The flexibility of the stack is also useful for validation purposes.
For instance, we have also changed the lowest JGroups protocol
that creates UDP sockets for another one that virtualizes
communication so we could easily create an emulation layer.

4.3 MChannel

On top of the routing protocols we have developed a channel
which enables flexible group communication over mobile ad-hoc
networks: the MChannel. The main characteristic of the
MChannel is that users can send messages to a single member or
to all the members in the group even if they are not in range. In
consequence, a MChannel is bound to a single group, so if we
want to communicate in two groups, we should create two
different channels.

When we designed the GC middleware for Manet settings we had
to cope with three main issues: group membership, failure
detection and flow control.

Group Membership: GC toolkits like JGroups maintain
membership and failure detection pinging frequently or using
keep-alives to all members in the JChannel. Whereas this
approach works fine in local area networks, it can severely harm
the overall MANET network creating unnecessary traffic. This
happens because JGroups is unaware of the multi-hop nature of
the medium. Our approach is to provide a lightweight group
membership protocol that directly benefits from the group
information of the OMOLSR multicast tree. In our
case, membership changes in OMOLSR are injected as JGroup
membership events to the protocol stack.

Failure Detection: As explained before, failure detection implies
pings or keep-alives to all group members. Again, this works in
flat groups, but it causes a real burden in a multi-hop network.
Our solution is to rely on the JOLSR topology detection
algorithms. jOLSR is already checking the availability of nodes
and continuously repairing the topology graph. Because of that, it
is optimal to benefit from this information to detect leaving

parterns of failing nodes. It is nonsense to duplicate the
communication overhead if jOLSR is already doing that job in an
efficient and decentralized way.

Flow Control: Sending messages to the network without any flow
control causes congestion and degrades the network throughput.
This is even worse in a multi-hop network where throughput
decays as the number of hops increases. In fact, throughput
degradation due to hop count has been well studied by Gupta et al
[21].

JGroups already provides a simple flow control protocol based on
a credit system. Each sender has a number of credits (bytes to
send) and when the credits have been exhausted, the sender
blocks. Each receiver also keeps track of how many credits it has
received from a sender. When credits for a sender fall below a
threshold, the receiver sends more credits to the sender.
Again, the existing algorithm does not take into account the
underlying multi-hop setting so data flows are not optimized for
the underlying network.

We have modified the JavaGroup FC (flow control) protocol to
benefit from topology information. Our strategy is to assign
credits to nodes in different proportions depending if they are at
one hop, two hops or more. We assign credits to nodes in a
proportion that depends in its decay of throughput due to the
multi-hop setting. The closest node (one hop) will obtain more
credits whereas distant nodes (more hops) will get less tickets.
With this decision we aim to adjust the flow to the available
throughput between nodes.

Apart from these functionalities, the MChannel could offer more
complex services in order to build MANET applications: quality
of service (QoS) considering multiple parameters at a time
(bandwidth, battery, CPU,...) to perform routing, hence providing
adaptive middleware; scoped multicast delivery enabling TTL
parameters related to MANET routing hops. In this way, multicast
messages could be restricted to a certain groups of (closer) nodes;
and MANET anycast services enabling filtering of events in
nodes.

We believe that the definition of these services could help to build
a useful library for collaborative MANET applications. Thanks to
the simplicity of our communication middleware for MANETs,
we believe that many future applications could use it and benefit
from its services. We offer a working prototype, with clear APIs,
and integrated in a existing well-known group communication
middleware (Jgroups). Finally, the interesting point is that our
middleware is self-contained: we do not rely on any installed
MANET transport protocol. In our case, the application creates
the MANET network..

5. VALIDATION
The work presented in this paper is not an architectural draft of a
middleware for communication in MANETs, but a real
implementation of this middleware. Thus, our objective is not to
show performance simulations of the application layer routing
protocols showing improvements over other protocols. Our main
goal is to provide a ready-to-use middleware to build group
applications in MANET networks. Nevertheless, we need to
validate our approach both in emulation and real environments, to
verify that our middleware is able to be the basis of group
applications over ad-hoc networks.

5.1 Emulation

As aforementioned before, an emulation transport layer was
implemented in order to validate our approach. We replace the
UDP layer of the JGroups protocol stack for a virtualized layer:
socket message delivery is replaced by local message queues. It is
worth saying that we used the final implementation of the
middleware with only a change in the transport layer, so we could
validate the middleware under emulated and real environments
without changing a line of code.

The emulator works as following:

1. It loads a dynamic network graph from a text file. This
file follows the Pajek format [22], describing the nodes
of the network and the edges that link the nodes.

2. The emulator applies the connectivity constraints in
each simulation step.

3. Then, the emulation layer simply adds all outgoing
unicast packets (from the jOLSR protocol) to the
receiver queue of the destination node of the message if
this node has a direct connection with the source node.
Similarly, broadcast packets are delivered to the queues
of all nodes that have a direct connection with the
source node in that moment.

The emulation layer can also simulate the loss of broadcast
packets, a useful feature to test the convergence of the routing
protocols when broadcast control packets are not received.

We tested both protocols (jOLSR and OMOLSR) in different
topologies, varying the number of nodes and the density of the
network. The applications used in the validation generate unicast
traffic to all the nodes in the network and multicast traffic for
different multicast groups. We could see that the performance was
acceptable and the data delivery ratio was almost the optimum
thanks to the unicast retransmission layer.

5.2 Real Test-Bed

As pointed out in [23], there is a serious lack of real-world
experiences in MANET research. Usually, researchers focus in
solving problems that are not observed in real world experiences.
However, since our middleware is intended to be used by real
applications, we believe that a real-world test should be done to
verify the performance of the routing protocols.

In order to test our middleware, 40 computer science students
were told to participate in a MANET test with their laptops
(Figure 4). They were distributed in several groups along the
campus, establishing different ad-hoc networks of maximum
diameter Ø = 4. Each node run a test application that was able to
join a chat with the other members of the group. The application
kept track of all sent and received packets as well as periodical
pictures of the underlying topology graph. The test involved
heterogeneous devices with different O.S. (Windows XP, Vista
and Linux) and different wireless cards. Test results were
successful, showing that both unicast and multicast traffic was
sent and received correctly. In our tests we created a Mchannel
with 20 laptops participating in the same multicast group with a
network diameter of 4 hops.

To verify the feasibility of our middleware, we sent a file (15MB
size) from one node to other nodes at different hops and we
measured the throughput of the channel. The test was performed
with nodes at one, two, and three hops to validate the decay in
throughput while transferring the file. Note that we used our
modified Flow Control protocol and a JGroups Unicast reliability
protocol that send retransmissions if the packet does not arrive to
the destination. For this reason, our packet delivery ratio is
100% thanks to retransmissions, but we can observe in red the
proportion of retransmissions in each hop. As we can see in the
Figure 5, we obtain a reasonable performance ranging from
almost 1MB per second at one hop, and decaying until around
200KB per second at four hops.

Figure 5. Bytes/s transmitted in different number of hops

We can see that in this case the proportion of retransmissions is
low in proportion. These numbers make our middleware feasible
for a large number of synchronous applications like shared
whiteboards, tele-pointers or file sharing. Furthermore, this
throughput is reasonable for voice communication applications
and even more if we remove the reliability protocol (unicast

retransmissions) and the overhead that it imposes. We must also
note that Java itself is imposing a high overhead and it limits the
maximum throughput of the channel. We are still trying to
improve these limits configuring the Java Virtual Machine.

Finally, we also tested the resiliency of the middleware to node
failures. We sent a file from one node to another one with one
intermediate hop (node 3). While transferring the file, we halted
the intermediate node 3 to verify that the system would self-repair.
As we can see in the figure 6, when the intermediate node halts,
the first node sends some retransmissions, but then jOLSR detects
the failing node and updates the topology graph. In that moment
(few seconds before) the traffic to the end node is rerouted
through node 2. This path is a less powerful node with more
interference but finally all data arrives to the destination.

Figure 6. Bytes/s retransmitted by the sender and received

coming from node 2 and 3

Figure 4. Picture of the real test and screenshot the network graph as seen by one of the participant nodes.

Although the overall system is working fine, we are still trying to
improve the flow control protocols among nodes. A severe
problem happens when powerful nodes flood with traffic less
powerful nodes and thus causing many retransmissions. We are
now designing adaptive and self-adjusting flow control protocols
that try to adjust credits to the available throughput between each
pair of nodes. We could also try to arbitrate traffic flows at the
application layer to avoid collapsing the network with
unnecessary competing data. We also foresee interesting
optimizations in the interaction of the routing protocols and
the middleware and applications.

6. CONCLUSIONS
 We have presented a novel topology-aware group communication
toolkit for mobile ad-hoc networks. We argue in this paper that
any GC middleware should be aware of the underlying multi-hop
routing protocol to improve communication efficiency. For that
reason, and avoiding dirty cross-layer solutions, we decided to
implement unicast (OLSR) and multicast (OMOLSR) MANET
protocols in the application layer. As a consequence, our
middleware directly benefits from the topology information of the
protocol and we avoid unnecessary traffic at a higher level.

We have modified a well-known GC toolkit (JGroups) in order to
adapt membership protocols, failure detectors and flow control
mechanisms to the underlying MANET topology. In our
middleware, group membership is obtained from OMOLSR
(overlay multicast), failure detection from the jOLSR protocol,
and our modified flow control protocol benefits from jOLSR
topology information.

To the best of our knowledge, we do not know any other group
communication middleware for MANETs built on top of existing
unicast and multicast MANET protocols. We offer a working
prototype, with clear APIs, and integrated in a existing well-
known group communication middleware (JGroups).
Furthermore, our middleware is self-contained and we do not rely
on any installed MANET transport protocol.

We validated our middleware by emulation and in a real test-bed
(40 campus users). We have proven that the protocol is consistent,
fault-tolerant and scalable to at least forty nodes with a maximum
of four hops. The protocol self-repairs the network in a scalable
way, and we proved that the system is resilient to failures. In our
test, one route was broken, and the system just rerouted the traffic
to other existing intermediate node. Furthermore, thanks to our
modified Flow Control protocol we obtained a reasonable
throughput when sending large files to different nodes. Our
performance numbers enable the development of many
synchronous applications including voice transmission, tele-
pointers, shared whiteboards and one-to-many presenter tools
over the MANET.

We foresee more work in this line to create specific routing
middleware depending on application requirements and
scenarios. We also believe that mobile devices will clearly benefit
from such application layer approaches that are neither intrusive
nor dependent with the underlying mobile device OS. Every
application will then be able to construct a MANET network
adapted to its communication requirements.

All the source code is freely available for download at http://ast-
deim.urv.cat/wiki/OMOLSR. In this site is also available a
youtube video of the MANET experiment.

7. ACKNOWLEDGEMENTS
This work was partially funded by the Spanish research project
P2PGRID (TIN2007-68050-C03-03) of the Spanish "Ministerio
de Ciencia e Innovacion".

8. REFERENCES
[1] Conti, M., Maselli, G., Turi, G., Giordano, S.: Cross-

Layering in Mobile Ad Hoc Network Design. IEEE
Computer Vol. 37, Num. 2, pp 48-51, Feb. 2004.

[2] Goldsmith, A.J., Wicker, S.B.: Design Challenges for
Energy-Constrained Ad Hoc Wireless Networks. IEEE
Wireless Comm., vol. 9, no. 4, 2002, pp. 8-27.

[3] Lin, X., Shroff, N.B., Srikant, R.: A Tutorial on Cross-Layer
Optimization in Wireless Networks. IEEE Journal on
Selected Areas in Communications. Aug. 2006. Volume: 24.

[4] Delmastro, F.: From Pastry to CrossROAD: CROSS-layer
Ring Overlay for AD hoc networks. Conf. on Pervasive
Computing and Communications Workshops (PerCom 2005
Workshops).

[5] Turi, G., Conti, M., Gregori, E.: A Cross Layer Optimization
of Gnutella for Mobile Ad hoc Networks. Proc. ACM
MobiHoc Symposium, Urbana-Champain, May 2005.

[6] Stine, J.A.: Cross-Layer Design of MANETs: The Only
Option. Military Communications Conference, 2006.
MILCOM 2006, pp. 1-7. 23-25 Oct. 2006.

[7] Wang, Q., Abu-Rgheff, M.A.: Cross-layer signalling for next
generation wireless systems. In: IEEE Wireless Commun.
And Net. Conf., 2003, pp. 1084 -1089.

[8] BAA05-42, PIP for DARPA ATO, Control-Based Mobile
Ad-Hoc Networking Program.

[9] Mottola L., Cugola G., Picco G.P. A Self-Repairing Tree
Topology Enabling Content-Based Routing in Mobile Ad
Hoc Networks. IEEE Transactions on Mobile Computing.
August 2008 (vol. 7 no. 8) pp. 946-960.
http://home.dei.polimi.it/cugola/Papers/topologyManagemen
t.pdf

[10] Yoneki E. and Bacon J. Distributed Multicast Grouping for
Publish/Subscribe over Mobile Ad Hoc Network. IEEE
Wireless and Communications and Networking Conference
200.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=014248
73

[11] Friedman R. JazzEnsemble: A Group Communication
Middleware for MANETs. Minema 2004
http://www.minema.di.fc.ul.pt/secondworkshop/RFriedman.p
pt

[12] Conti M, Crowcroft J., Delmastro F., Passarella A. P2P
support for Group-Communication Applications: a Cross-
Layer Approach for MANET Environments. INFOCOM
2006
http://www.comsoc.org/confs/infocom/2006/Posters/156898

0817_P2P%20support%20for%20Group-
Communication.pdf

[13] Bar-Yossef Z, Friedman R, and Kliot G. Evaluating Failure
Detection in Mobile Ad-Hoc Networks. International Journal
of Wireless and Mobile Computing Vol. 1 No. 8, 2005

[14] Bar-Yossef Z, Friedman R, and Kliot G. RaWMS - Random
Walk based Lightweight Membership Service for Wireless
Ad Hoc Networks
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
get.cgi/2006/CS/CS-2006-05.pdf

[15] Chakeres, I., Perkins, C.: Dynamic MANET On-demand
(DYMO) Routing. Internet draft: draft-ietf-manet-dymo-12.

[16] Clausen, T., Jacquet, P.: Optimized Link State Routing
Protocol (OLSR). Request for Comments 3626, October
2003.

[17] Krishnamurthy G, Faloutsos, M.: Application versus network
layer multicasting in ad hoc networks: the ALMA routing
protocol. Elsevier Ad Hoc Networks Journal, vol. 4, no. 2,
pp. 283-300, 2006.

[18] Gui, C., Mohapatra, P.: Efficient overlay multicast for
mobile ad hoc networks. In: The Wireless Communications
and Networking Conference (WCNC), New Orleans,
Louisiana, USA, Mar. 2003

[19] Jacquet P., et al.: Multicast Optimized Link State Routing.
Internet-Draft, draft-ietf-manet-olsr-molsr-01.txt, November
2001.

[20] JGroups Toolkit. http://www.jgroups.org/.

[21] P. Gupta and P.R. Kumar, “The capacity of wireless
networks,” IEEE Transactions on Information Theory, vol.
46, no. 2, pp. 288–404, March 2000.

[22] Batagelj, V., Mrvar, A.: PAJEK: Program for large network
analysis. Connections, 21:47-57, 1998.

[23] Gunningberg, P., Lundgren, H., Nordstrom, E., Tschudin, C.:
Lessons from Experimental MANET Research. Ad Hoc
Networks Journal, special issue on “Ad Hoc Networking for
Pervasive Systems”, Vol. 3, Number 2, March 2005.

[24] Kawadia, V., Kumar, P.R.: A cautionary perspective on
cross-layer design. Wireless Communications, IEEE Volume
12, Issue 1, Feb. 2005.

[25] Zhou, B. et al.: A Cross-Layer Route Discovery Framework
for Mobile Ad Hoc Networks. EURASIP Journal on
Wireless Communications and Networking, 2005.

[26] Srivastava, V., Motani, M.: Cross-layer design: a survey and
the road ahead. Communications Magazine, IEEE Volume
43. 2005.

