
 

OMOLSR User’s Guide 1.0 

 
Grup de recerca en Arquitectura i Serveis Telemàtics (AST) 

Departament d’Enginyeria Informàtica i Matemàtiques 
Universitat Rovira i Virgili 

May 2008



 

 

Index 
 

Index________________________________________________________________ 2 

1 OMOLSR Basic functioning ___________________________________________ 3 

1.1 Emulator______________________________________________________________ 3 

1.2 Real applications _______________________________________________________ 3 
1.2.1 AppTest___________________________________________________________________4 
1.2.2 SimpleSenderApplication _____________________________________________________5 

1.3 Properties file __________________________________________________________ 5 

2 Creating new applications _____________________________________________ 6 
 



OMOLSR User’s Guide 
 

1 OMOLSR Basic functioning 
OMOLSR is presented as a jar file named test_application.jar. This jar file is auto-
executable and starts the class urv.emulator.AppLauncher. This class is the entry point 
both for the emulator and to run applications in a real environment. The behaviour of 
this class is specified in the ./conf/omolsr.properties file. 
test_application.jar is available at http://ast-deim.urv.cat/popeye/test_application.jar 

1.1 Emulator 
When the jar file is launched as emulator, the AppLauncher creates as many instances 
of the application as nodes the emulation graph contains. Messages are not sent through 
the network, but through a special Emulation layer. 
 

 
Fig. 1. JGRoups protocol stacks for real applications (left) and emulated applications (right). 

Messages from real applications are routed through the network, whereas messages from emulated 
applications are delivered considering the constraints in the graph file. 

 
The emulator accepts task classes that support the emulation and collect statistics. 
Existing task classes are the following: 

• CommunicationStatsTask: This task gathers information about all messages sent 
and received in the network by all applications. It verifies that all nodes that 
were in the view of the source node received the multicast message. 

• MembershipStatsTask: This task gathers information about the groups created in 
the applications and the nodes that joined these groups. This information is 
checked with the view of each MChannel, in order to verify the correct 
behaviour of getView() method in the channel. 

• TopologyChangesTask: This task is in charge of changing the underlying 
topology as it is defined in the network graph. This task also checks that the 
Neighbor table of the jOLSR protocol of each node is consistent with the real 
neighborhood of each node. 

1.2 Real applications 
When the jar file is launched in real environment, the AppLauncher only creates one 
instance of the application. Messages are sent using standard UDP sockets. Although 
tasks cannot be launched in real environment applications, a special flag 
(COMM_LOG) can be enabled to gather logs about sent and received messages. 
There are several applications in the distributed jar file, mainly used for testing 
purposes. The most complete application is AppTest, that provides unicast and multicast 



OMOLSR User’s Guide 
 

communication through an easy-to-use GUI. Another useful testing application is the 
SimpleSenderApplication. Under the package urv.app there are also other applications 
like MembeshipTest or RealTest. 

1.2.1 AppTest 
AppTest is a GUI application that was designed to test the protocols in real 
environments. This application allows the user to join different groups and start chats 
with all the group members. Chats can use multicast communication so every member 
in the group can read the messages, or unicast communication, that can only be read by 
the destination of the message. 
Fig. 2 is a screenshot of this application. In the upper side the user can specify the 
multicast group to join. Once the user joins a group, a new big tab appears. In the left 
side of this tab there is the group members list and in the right side there is a graph 
representation of the network as seen by the local node. The local node is colored in 
green and the other nodes in red. There exists the possibility of changing the layout of 
the nodes by selecting the desired layout from the list below the graph. It is also 
possible to zoom in and out the graph representation. 
The center panel holds the chat tabs. By double-clicking on a member of the list, a new 
chat tab for this member appears in the center panel. You can chat with different people 
of the same group and also in the default multicast chat. Messages sent to the multicast 
chat are received by all group members. When a chat message is received, the tab 
corresponding to the sender is highlighted in blue. 
 

 
Fig. 2. Screenshot of AppTest application. 

 
A button (Dump) in the top-left corner can be used to show the internal tables of jOLSR 
in run-time: Routing table, NeighborTable, TopologyTable and MprSet. 



OMOLSR User’s Guide 
 

1.2.2 SimpleSenderApplication 
SimpleSenderApplication was designed to test the protocols. This application basically 
creates a MChannel and sends multicast messages through it. If launched with the 
CommunicationStatsTask, you can see how many messages were correctly delivered to 
the other members of the group. 

1.3 Properties file 
 The Java properties file that defines the behavior of OMOLSR is located at 
./conf/omolsr.properties. The function of each property is described here: 

• EMULATED: This flag indicates whether to perform network emulation or run 
a real application. 

• COMM_LOG: This flag indicates if communication logging is enabled. This 
feature is only used for non-emulated environments. 

• UNICAST_PORT: The unicast UDP port used in real applications. 
• RELIABILITY: This flag indicates whether the protocol stack includes 

reliability protocols or not. 
• MULTICAST_PROTOCOL: The protocol that will be used to send multicast 

messages. Currently, there are two protocols available: OMOLSR and 
SMCAST. 

• GRAPH_FILE: The pajek file used for the network simulation. One application 
will be launched for each node in the network graph. The file can be static (with 
extension .net) or dynamic (with extension .tim). Dynamic graphs involve 
adding and hiding edges at different time instants. 

• APPLICATION: The application class that will be launched, either in emulation 
or in real environment. Most applications can be used in both environments. 

• EMULATION TASK: A list of tasks classes. These tasks are launched to 
support the emulation. 

• SENDING_PROB: jOLSR control messages are sent with this probability. If the 
probability is 1.0, all messages will be delivered to the destination. If the 
probability is 0.0, all sent messages are discarded. 

 
 
The possible values of the properties are listed in the following table: 
 

Property name Possible values 
EMULATED TRUE, FALSE 
COMM_LOG TRUE, FALSE 
UNICAST_PORT A port number > 1024 
RELIABILITY TRUE, FALSE 
MULTICAST_PROTOCOL OMOLSR, SMCAST 
GRAPH_FILE A graph file (extension .net or .tim) 
APPLICATION The fully qualified class name of an application class 
EMULATION_TASKS A comma separated values list of tasks classes 
SENDING_PROB A float value between 0.0 and 1.0 

 



OMOLSR User’s Guide 
 

2 Creating new applications 
In order to create new applications you must follow these guidelines: 

• The application class must extend urv.emulator.core.Application. E.g.: 
 
import urv.emulator.core.Application ; 
 
public  class  AppTest extends  Application{ 
 ... 
} 
 

• The application class must implement the abstract method Application.start(). 
After the invocation of this method, the new application can start creating 
MChannels. 

• The creation of the MChannel must be done with the method 
Application.createMChannel(MulticastAddress). Before sending and receiving 
messages, the application must invoke the method start on the created 
MChannel. E.g.: 

MulticastAddress mcastAddr = new MulticastAddress(); 
mcastAddr.setValue("224.0.0.10"); 
 
MChannel mChannel = super .createMChannel(mcastAddr); 
mChannel.registerMessageListener(“MyApp”, ... ); 
mChannel.addMembershipListener( “MyApp” ); 
//We must call start before sending and receiving m essages 
mChannel.start();  


