

OMOLSR Developer’s
Guide 1.0

Grup de recerca en Arquitectura i Serveis Telemàtics (AST)

Departament d’Enginyeria Informàtica i Matemàtiques
Universitat Rovira i Virgili

May 2008

Index

Index__ 2

1 General Architecture ___ 3

1.1 JGroups___ 4
1.1.1 JGroups dependencies__4

2 jOLSR ___ 5

2.1 Data Structures __ 5
2.1.1 NeighborTable ___5
2.1.2 MprSet ___5
2.1.3 MprSelectorSet ___6
2.1.4 NeighborsOfNeighborsSet __6
2.1.5 TopologyInformationBaseTable __6
2.1.6 RoutingTable __6
2.1.7 MulticastNetworkGraph __6
2.1.8 MulticastGroupsTable__6

2.2 jOLSR messages__ 7
2.2.1 HELLO messages ___7
2.2.2 TC messages ___7
2.2.3 Message generation__7
2.2.4 Message handling ___8

2.3 jOLSR functioning__ 8

2.4 Unicast routing___ 9

3 OMOLSR ___ 10

3.1 Data Structures ___ 10

3.2 OMOLSR functioning __ 10
3.2.1 Tree computation __10
3.2.2 Multicast routing___11

4 Messages and events___ 12

4.1 Messages ___ 12

4.2 Events ___ 12

5 Emulator __ 13

5.1 Tasks __ 13
5.1.1 Topology task ___13
5.1.2 Statistics task__13

6 Package structure ___ 14

OMOLSR Developer’s Guide

1 General Architecture
This middleware is based in offering a channel to enable multi-hop communication in
Mobile Ad Hoc Networks. As depicted in Fig. 1, the multi-hop channel (M-Channel)
uses both unicast and multicast functionalities provided by the two underlying
protocols: jOLSR and OMOLSR.
In first place, OMOLSR computes multicast routing thanks to the information received
via events coming from jOLSR. These events allow OMOLSR to update the OMOLSR
Network Graph (ONG), which will be used for routing computation as well as for
providing membership information. Since OMOLSR is an application level multicast
protocol, it will split a multicast message into multiple unicast messages. In order to do
this, messages are sent to jOLSR so they can be routed to the other members of the
group. Furthermore, message delivery is provided with unicast reliability, so nearly full
delivery ratio is achieved.
Besides, jOLSR stores network information in different tables similarly to OLSR
specification: Neighborhood information base (NIB) stores neighbor information; Local
Link Information Base (LLIB) keeps updated information about the state of links to the
neighbors; Topology Information Base (TIB) maintains information of the network
topology to perform routing calculation. Apart from these tables, OMOLSR needs a
new table called Multicast Group Table (MGT) which stores information about which
nodes are present in each multicast group.
Finally, on the bottom layers, UDP Protocol allows jOLSR to send control (broadcast)
and data (unicast) packets.

Fig. 1 General Architecture. Each component of the architecture is linked with the corresponding

protocol in the JGroups stack

OMOLSR Developer’s Guide

1.1 JGroups
In order to ease and clarify the development of both jOLSR and OMOLSR, we have
extended an existing toolkit for reliable communication: JGroups. The key feature of
JGroups is its flexible protocol stack, which can be configured and extended depending
on the communication needs. Each protocol in the stack provides different
functionalities: ordering, reliability, membership, state transfer, etc. In our case, we
have implemented both routing protocols (jOLSR and OMOLSR) as JGroups protocols
so we can benefit from unicast reliability and ordering by adding the UNICAST
protocol to our stack.
Each JGroups channel (JChannel) is initialized with a protocol stack specified in a
String or an XML file. The stack is a sequence of protocol names and their optional
initialization parameters. For instance, the following stack is used to initialize JChannels
in OMOLSR (see urv.conf.ApplicationConfig):

“ UDP(mcast_send_buf_size=640000;discard_incompatible_pa ckets=true;ucas
t_recv_buf_size=20000000;loopback=false;mcast_recv_ buf_size=25000000;m
ax_bundle_size=64000;max_bundle_timeout=30;use_inco ming_packet_handler
=true;ucast_send_buf_size=640000;tos=16;port_range= 1000;enable_bundlin
g=false;ip_ttl=32;bind_port=5034): OLSR(mcast_addr=224.0.0.10): UNICAST(
timeout=1200,1800,2400,5000,8000;use_gms=false): OMOLSR(mcast_addr=224.
0.0.10)”

In OMOLSR, each MChannel is mapped to a JGroups channel.

1.1.1 JGroups dependencies
We have modified some classes of JGroups version 2.5.2 to fit our needs. The source
code of JGroups is located under the srcJG252 folder. Modified blocks are noted with a
comment in the code (//OMOLSR CHANGE). Anyway, the classes with modified
blocks are the following:

• org.jgroups.protocols.UDP: The local address is not obtained from the socket as
JGroups does, but is obtained from the protocol stack properties bind_addr and
bind_port.

• org.jgroups.protocols.UNICAST: A restriction that does not allow sending
messages to non group members is removed.

• org.jgroups.JChannel: User defined events are allowed to be passed up to the
MChannel.

OMOLSR Developer’s Guide

2 jOLSR
jOLSR is an application level implementation of the OLSR routing protocol written in
JAVA. Although jOLSR includes the basic functionality of OLSR, some modifications
have been added to provide topology and group membership information to the upper
multicast protocol. For the complete technical specification of OLSR, see RFC3626.
The implementation of jOLSR can be found under the package urv.olsr.

2.1 Data Structures
Data structures used by jOLSR can be found under the package urv.olsr.data. The main
data structures are the following:

• NeighborTable: This table contains information about neighbors of the current
node and status with all neighbors.

• MprSet: A set that holds information about the multi-point relay nodes (MPRs)
of the current node.

• MprSelectorSet: A set that holds information about the nodes that have the
current node as MPR.

• NeighborsOfNeighborsSet: This table contains a list of neighbors for each
neighbor of the current node.

• TopologyInformationBaseTable: this table stores the information received in TC
messages, i.e.: a list of neighbors of each TC message originator.

• RoutingTable: This table defines the routing policy of the node. It defines which
is the next intermediate node A that should receive the message when we want
to deliver a message to node B.

• MulticastNetworkGraph: This data structure maintains a graph of the network
using the information stored in NeighborTable and TopologyTable.

• MulticastGroupsTable: This table contains the list of multicast groups each node
has joined.

There are also other auxiliary data structures such as the DuplicateTable, which is used
to detect duplicated control messages, or the packet format structures that encapsulate
the messages, that will be deeper explained in following sections.

2.1.1 NeighborTable
The NeighborTable is defined in the class urv.olsr.data.neighbour.NeighborTable. Since
it is a subclass of ExpiringEntryTable, its entries are removed when the timeout expires.
For each node (neighbor of the current node) in the table we store the link status and the
neighbors of that node (neighbors of neighbors of the current node).
Whenever the NeighborTable changes (by adding or removing a neighbor or a neighbor
of neighbor), a status flag is set to true. This flag is used by other tables that depend on
the information stored in this table. After a change takes place, the MPR set must be
recomputed as well, and a flag for this action is also set to true.
HELLO messages are created using the information stored in the NeighborTable, and a
convenience method is provided to create these control messages.

2.1.2 MprSet
The MprSet is defined in the class urv.olsr.data.mpr.MprSet. This class simply contains
a list of the nodes that are chosen as Multi-point Relay nodes.

OMOLSR Developer’s Guide

2.1.3 MprSelectorSet
The MprSelectorSet is defined in the class urv.olsr.data.mpr.MprSelectorSet. This class
contains the list of nodes that have chosen the current node as MPR. It also provides a
convenience method to create TC messages. Each of these messages include a sequence
number that is auto-incremented every time the MPR selector set is changed.

2.1.4 NeighborsOfNeighborsSet
The NeighborsOfNeighborsSet is defined in the class urv.olsr.data.neighbour.
NeighborsOfNeighborsSet. The set contains a list of neighbors for each neighbor of the
current node. The NeighborTable includes a reference to this set.

2.1.5 TopologyInformationBaseTable
The TopologyInformationBaseTable (or TopologyTable) is defined in the class
urv.olsr.data.topology.TopologyInformationBaseTable. Since it is a subclass of
ExpiringEntryTable, its entries are removed when the timeout expires.
Entries of this table are indexed by a pair of nodes. A sequence number is used to
replace old entries by newer ones.
Whenever the TopologyTable changes (by adding or removing a pair of linked nodes), a
status flag is set to true. This flag is used by other tables that depend on the information
stored in this table.

2.1.6 RoutingTable
The RoutingTable is defined in the class urv.olsr.data.routing.RoutingTable. The
routing table contains the routing information for every node of the network. Each entry
of the routing table contains the address of the next hop to reach a specific destination,
and the number of hops to the final destination.

2.1.7 MulticastNetworkGraph
The MulticastNetworkGraph is defined in the class urv.olsr.mcast.
MulticastNetworkGraph. This class contains a reference to the MulticastGroupsTable as
well. The graph is built using the information available in the local Neighbor Table and
Topology Table: so the graph is recomputed when changes are detected in Neighbor
Table and Topology Table.
This class also provides a method to obtain a contracted graph that only includes the
nodes that belong to a specific group. The edges of the contracted graph are tagged with
a weight that is the number of physical hops between the vertices of the edge.

2.1.8 MulticastGroupsTable
The MulticastGroupsTable is defined in the class urv.olsr.mcast.MulticastGroupsTable.
This class provides methods to register and unregister a node to a specific multicast
group, as well as methods to obtain the list of groups a node is registered to.
Whenever the MulticastGroupsTable changes (by adding or removing a multicast group
in a node’s list), a status flag is set to true. This flag is used by other tables that depend
on the information stored in this table.

OMOLSR Developer’s Guide

2.2 jOLSR messages
In order to maintain the routing information up-to-date, each jOLSR node must send
control messages to the other nodes of the network. Two types of control message are
used in jOLSR: HELLO messages and TC messages.

2.2.1 HELLO messages
A Hello message is periodically broadcasted to the neighbor nodes. It includes a list of
neighbors of the local node with the link status of each neighbor. HELLO messages
permit a node to know its one-hop and two-hop neighbors, since each node sends
information about its local neighborhood.
Hello message is defined in the class urv.olsr.message.HelloMessage. In order to
decrease the size of the packets, the message encoding is the following:

• A byte that indicates the number of different linkcodes.
• For each different linkcode, the message includes a byte for the linkcode.
• After the linkcode, the message indicates the size of the list of neighbors which

share the same linkcode.
• And finally, the list of neighbors. Each neighbor is represented by its IP address

encoded in four bytes.

2.2.2 TC messages
A Topology Control message is periodically broadcasted to all nodes in the network
using the multi-point relays (MPRs). This message includes the list of nodes contained
in the local MPR selector set, thus topology information of the local node is
disseminated to all nodes in the network.
TC message is defined in the class urv.olsr.message.TcMessage. TC Messages perform
the same function than in the OLSR specification, but a modification has been added to
disseminate information about the multicast groups to all nodes in the network.
Therefore, the multicast addresses of the groups joined by the local node are attached in
TC messages. This information about the groups each node has joined, is used later to
fill the Multicast groups table. Thus, the encoding of TC messages is the following:

• An Advertised Neighbor Sequence Number (ANSN) is associated with the
advertised neighbor set.

• The size of the advertised neighbor set.
• The advertised neighbor set: Each neighbor is represented by its IP address

encoded in four bytes.
• The size of the list of joined multicast groups.
• The list of joined multicast groups. Each group is represented by its multicast IP

address encoded in four bytes.

2.2.3 Message generation
jOLSR needs to send HELLO and TC messages periodically in order to maintain the
routing information up-to-date. The class that is in charge of controlling the intervals
between message sending is urv.olsr.core.OLSRThread. This class invokes a method on
Generator classes that generate a new HELLO or TC message and send it to the
neighbors or to all nodes in the network, respectively.
As stated before, HELLO messages are generated in the NeighborTable, since these
messages only include information about the local neighborhood.

OMOLSR Developer’s Guide

On the other hand, TC messages are generated in the MprSelectorSet, since these
messages include a list of MPR selectors. The information about joined multicast
groups is automatically added to the TC messages.

2.2.4 Message handling
When a new message is received, it is processed by different classes and depending on
its contents is discarded, delivered to the upper protocols of the stack, forwarded or
handled. The overall process is described here:
Messages are received by the OLSR protocol (org.jgroups.protocols.OLSR), which
based on the OLSR headers determines whether it is a user data message or a control
message. If it is a control message, the OLSRController (urv.olsr.core.OLSRController)
is in charge of checking that the message is not a duplicated and its time-to-live is valid.
Then, depending on the type of message, the controller invokes either the
HelloMessageHandler or the TCMessageHandler.
The HelloMessageHandler (urv.olsr.handlers.HelloMessageHandler) is in charge of
updating the data structures taking into account the information contained in the
received HELLO message. Data structures that can be modified by the reception of a
HELLO message are the NeighborTable, the NeighborsOfNeighborsTable, the MprSet
and the MprSelectorSet.
If the received message is a TC message and the current node is a MPR, this message
must be forwarded. After checking if the TC message must be forwarded, the message
is handled by the class urv.olsr.handlers.TcMessageHandler. This class updates the
topology table by removing entries with a sequence number older than the one included
in the received message. If the message includes new entries that do not exist in the
topology table, these new entries are added to the table.
TcMessageHandler also updates the Multicast Groups Table with the information about
the multicast groups joined by the originator of the message.

2.3 jOLSR functioning
jOLSR must maintain tables up-to-date continuously. So, control messages must be sent
periodically as well as table information must be removed when timeouts are over.
Therefore, jOLSR needs a timing thread that handles these periodic tasks. The
implementation of this thread is defined in the class urv.olsr.core.OLSRThread. Tasks
assigned to this thread are the following:

• Handle the timeouts of all data structures that extend ExpiringEntryTable.
• Check the flag that indicates whether MprSet should be recomputed.
• Look for changes in NeighborTable, TopologyTable and MulticastGroupsTable

(as indicated by their respective change flag). When there are changes in any of
these tables, the multicast network graph must be recomputed. If there are
changes in the NeighborTable or in the TopologyTable, the RoutingTable must
be also recomputed.

• Control intervals between HELLO and TC messages sending.
The algorithm that computes the MprSet is implemented in the class
urv.olsr.core.MprComputationController.
Instances and sequence diagram
As aforementioned, JGroups stack is composed by different protocols, one of them
being jOLSR. Application messages are passed down the stack and are intercepted by
each protocol, which may add a header in each message. Likewise, messages from the
network are passed up the stack and protocols may retrieve information from headers of

OMOLSR Developer’s Guide

its own type. One application may start more than one JChannel, the basic structure that
gives access to the JGroups protocol stack. Therefore, more than one instance of
org.jgroups.protocols.OLSR may be started. However, in order to have a single instance
of the protocol, the OLSRController is implemented as a singleton. Since this class
creates the data structures and starts the OLSRThread, we ensure that there will be only
one instance of the core classes of the protocol.
Each JChannel is mapped to a group, and hence to a multicast address. The
org.jgroups.protocols.OLSR object registers itself in the OLSRController using this
multicast address. The first OLSR object that registers in the OLSRController will be
used for message sending. So, the first created channel is the only one used to send
messages to the network. The messages sent through the other channels will be
redirected to the first channel at jOLSR level. The first channel of each node will always
share the same UDP port. This port is used for all message sent, hence the only channel
that receives messages from the network is the first created channel.
Message headers associated to each protocol are used to send and retrieve information
about these protocols. OLSR headers provide information about the type of message.
There are two possible types: DATA (application data) and CONTROL (Hello
messages and TC messages). The multicast address of the group (or channel) is also
included in the headers. Control messages are delivered two the core classes of the
protocol. On the other hand, data messages addressed to the local node are passed up to
the corresponding protocol stack depending on the multicast group indicated in the
header.

2.4 Unicast routing
The routing of unicast messages in jOLSR is very simple because routing table is
continuously updated. jOLSR routes two kind of messages depending on their origin:
unicast messages sent down by upper protocols and unicast messages coming from the
lower protocols. The former messages are directly routed but the latter are only routed if
their final destination is not the local node.
The method OLSRController.handleOutgoingDataMessage() is in charge of sending the
message to the next address obtained from the Routing table. The final destination
address is kept in a special OLSR header added to all messages, because receiving
nodes must know which the actual destination of a message is.

OMOLSR Developer’s Guide

3 OMOLSR
OMOLSR (Overlay Multicast over OLSR) is a new application level multicast routing
protocol, designed to work on top of jOLSR. OMOLSR computes locally minimum
spanning trees by benefiting from the topology information gathered by jOLSR. The
main characteristic of OMOLSR is that it does not need to send additional control
packets to perform multicast delivery. The unicast routing protocol already provides all
necessary information.

3.1 Data Structures
Data structures of OMOLSR are minimal because all the topology information is
provided by the underlying unicast routing protocol, jOLSR. The class
urv.omolsr.data.OMOLSRData gives access to the main OMOLSR data structures:

• omolsrNetworkGraph: This object is a representation of the graph that nodes of
the multicast group form.

• mstNetworkGraph: This object is a representation of the minimum spanning tree
computed from the omolsrNetworkGraph.

• temporalNodes: An auxiliary table that lists nodes that are temporally out of the
group membership.

The class OMOLSRData provides the necessary methods to access these data structures
and computing minimum spanning tree.

3.2 OMOLSR functioning
The “entry point” of this protocol is the class org.jgroups.protocols.OMOLSR. This
class is a JGroups protocol that is included in the protocol stack of MChannel willing to
use multicast communication. Like in jOLSR, one application may start more than one
JChannel and therefore, more than one instance of org.jgroups.protocols.OMOLSR may
be started. But although jOLSR only has an instance of the core classes of the protocol,
in OMOLSR there is an instance of each core class for each multicast group.
OMOLSR receives updates of the network graph via events. Once a new update is
received, the minimum spanning tree must be computed again.

In the following sections we will explain the basic operations of OMOLSR: dynamic
computation of the Minimum Spanning Tree and routing of multicast packets.

3.2.1 Tree computation
When an update of the network graph is received, OMOLSR computes a minimum
spanning tree with the local node as the source of the tree, as depicted in Fig. 2. The tree
will then be used for routing multicast packets to all the members of the group.

OMOLSR Developer’s Guide

Fig. 2. The graph on the left is the real topology of the network, with the members of the group in

black. The graph on the right is the minimum spanning tree for the node A.

3.2.2 Multicast routing
Multicast routing is implemented in the class urv.omolsr.core.StandardHandler. In order
to route multicast packets, OMOLSR uses an explicit multi-unicast scheme. When the
application generates a new multicast packet, OMOLSR routes the message based on
the tree computed for that multicast group. A copy of the packet is sent to each virtual
neighbor (a neighbor in the minimum spanning tree), which is responsible for delivering
the message to a certain subset of nodes. This subset is defined in each node by using
the source-created tree and consists of all the nodes that are in the subtree of each virtual
neighbor. This information is then attached to the header of the data packet. When the
virtual neighbor receives the message, it computes a tree with the subset of nodes
contained in the header. Again, it sends a copy of the data message to its virtual
neighbors with new header content. The process is repeated until the subset which must
receive the message is empty.

OMOLSR Developer’s Guide

4 Messages and events
The different protocols of a JGroups stack exchange events up and down the stack in
order to share information or modify user messages. A message sent by the user’s
application is itself an event that is passed down through the stack until is sent to the
network and is passed up again through the receiver stack.

4.1 Messages
As aforementioned, a message is passed through the stack as a Message Event. At
MChannel level we distinguish 2 kinds of outgoing message: multicast message and
unicast message. Multicast messages are intercepted by OMOLSR and are split in
several unicast packets and passed down. On the other hand, unicast messages are
ignored by OMOLSR and are also passed down. So, at jOLSR level, all the packets
intercepted are unicast (i.e.: they have a single destination address). Thus, jOLSR
simply sends each packet to the next hop to achieve the destination address. It is worth
noting that a special protocol header is added to multicast packets intercepted by
OMOLSR and unicast packets intercepted by jOLSR.
Received unicast packets at jOLSR level can be unicast packets to forward or, unicast
messages arriving at its final destination. However, if these unicast messages have an
OMOLSR header, they can also be multicast packets to forward or, multicast messages
arriving at their final destination. So, headers are used to mark packets to be intercepted
by the protocols.

4.2 Events
OMOLSR uses an event to pass up the network graph from the jOLSR protocol to the
OMOLSR protocol and the application layer. This event is encapsulated in the class
urv.olsr.mcast.UpdateEvent and is passed up using the USER_DEFINED type of
JGroups.
When jOLSR detects changes in the underlying topology or local neighborhood, a new
network graph is computed, and a contraction of this graph is passed up to all started
channels. Each contracted graph only includes the nodes that are joining the group of
the specific channel.

OMOLSR Developer’s Guide

5 Emulator

5.1 Tasks
The emulator accepts task classes that support the emulation and collect statistics.

5.1.1 Topology task
This task, defined in the class urv.emulator.tasks.topology.TopologyChangesTask, is in
charge of changing the underlying topology as it is defined in the network graph. This
task also checks that the Neighbor table of the jOLSR protocol of each node is
consistent with the real neighborhood of each node.

5.1.2 Statistics task
There are two statistics tasks:

• urv.emulator.tasks.stats.CommunicationStatsTask: This task gathers information
about all messages sent and received in the network by all applications. It
verifies that all nodes that were in the view of the source node received the
multicast message.

• urv.emulator.tasks.stats.MembershipStatsTask: This task gathers information
about the groups created in the applications and the nodes that joined these
groups. This information is checked with the view of each MChannel, in order to
verify the correct behavior of getView() method in the channel.

OMOLSR Developer’s Guide

6 Package structure
The implementation classes of jOLSR and OMOLSR are structured under two different
top level packages: org.jgroups.protocols and urv.
Under org.jgroups.protocols, we can find the classes that are inserted in the JGroups
protocol stack (both protocols: OLSR and OMOLSR). Since these protocols are used in
the JGroups protocol stack, they must maintain the package hierarchy specified in the
JGroups toolkit. Other classes under this package are the protocol’s headers and the
SMCAST protocol (a simple multi-unicast protocol that can replace OMOLSR).
Under urv top level package we can find different sub-packages that contain most of the
implementation of both protocols. The sub-packages are organized as follows:

• urv.app: This package contains several applications that work on top of the
protocols. These applications can be used in emulation and in a real
environment.

• urv.conf: This package contains classes that load and store configuration
parameters.

• urv.emulator: This package contains the classes that are used in an emulated
environment to test applications and protocols.

o urv.emulator.core: Core classes of the emulator
o urv.emulator.tasks: This packa
o urv.emulator.topology:

• urv.olsr: This package contains the main classes of the jOLSR implementation.
o urv.olsr.core: Core classes of jOLSR: controller, timing thread, table

computation.
o urv.olsr.data: This package holds all data structures used in the protocol.
o urv.olsr.handlers: this package contains the classes that handle jOLSR

control messages.
o urv.olsr.mcast: This package includes the functionalities added to jOLSR

to support upper layer multicast protocols.
o urv.olsr.message: This package contains the implementation of messages

and packet formats used by jOLSR.
o urv.olsr.util: Utility functions to handle jOLSR data structures.

• urv.omolsr: This package contains the main classes of the OMOLSR
implementation.

o urv.omolsr.core: Core classes of OMOLSR: controller and message
handlers.

o urv.omolsr.data: This package holds all data structures used in the
OMOLSR protocol.

o urv.omolsr.util: Utility functions to handle OMOLSR data structures.
• urv.resources: This package is used to access resources such as GUI images.
• urv.util: This package contains utility classes to operate with dates and graphs.

