

Universidad de Murcia

Departamento de Ingeniería de la Información y las Comunicaciones

DESIGN AND IMPLEMENTATION OF A WIDE-AREA MIDDLEWARE

INFRASTRUCTURE FOR THE DEVELOPMENT OF DISTRIBUTED APPLICATIONS IN

STRUCTURED PEER-TO-PEER ENVIRONMENTS

PHD THESIS DISSERTATION

Presented by:

Carles Pairot Gavaldà

Directed by:

Dr. Pedro Antonio García López

Departament d‘Enginyeria

Informàtica i Matemàtiques

Universitat Rovira i Virgili

Dr. Antonio F. Gómez Skarmeta

Departamento de Ingeniería de la

Información y las Comunicaciones

Universidad de Murcia

Murcia, November 2006

 iii

Dr. Antonio Fernando Gómez Skarmeta, Full Professor of Telematics Engineering in

the Department of Communication and Information Engineering from the University of

Murcia, AUTHORIZES:

The presentation of the thesis dissertation entitled Design and Implementation of a

Wide-Area Middleware Infrastructure for the Development of Distributed Applications

in Structured Peer-to-Peer Environments, written by Mr. Carles Pairot Gavaldà, under

his supervision and that of Dr. Pedro Antonio García López, and submitted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy for the University

of Murcia.

In Murcia, on ___ , ________ 2007

Dr. Antonio Fernando Gómez Skarmeta

 iv

 v

Abstract

Distributed systems have evolved considerably in recent years. Depending on the

scalability level required, several solutions can be found to develop distributed

applications. If the number of users is relatively low, there are several centralized client-

server models, with a rather simple subjacent architectural complexity, which provide

an acceptable performance.

As soon as a distributed application needs to grow, its set of target users probably does

so as well. It is at this point that centralized solutions start showing performance

problems because of the well known bottleneck effect: that is to say, the central server is

unable to efficiently cope with all of the users‘ needs. As a consequence of these

scalability needs, the current trend is towards decentralization, thus minimizing this

bottleneck effect by adding more servers that process logic. Therefore, not so many

clients overwhelm the single central server.

These approaches are adequate for applications which do not need to be worldwide

scalable because the number of potential users they are used by is relatively enclosed,

and not excessively big. However, when worldwide scalability is required,

decentralization is one of the best options, but it also creates many problems which have

to be dealt with. Some of these problems include how to provide fault tolerance, how to

deal with constant node joins and leaves, and many others.

This thesis proposes a set of middleware elements that help to develop distributed

applications which are worldwide scalable, dynamic and fault tolerant. We have chosen

a totally decentralized paradigm which guarantees the scalability of worldwide

accessible applications. This middleware is built on three basic pillars. Firstly, we need

an efficient message routing layer; secondly, we need a layer which provides

application-level multicast services, so that one-to-many communication is efficient.

Finally, a decentralized persistence service is required to store and restore data.

Using these three primitives, we build a wide-area middleware platform for the

development of distributed applications, based on a remote object layer and a

distributed component layer. The functionalities of these tiers‘ are as generic as

possible so they do not depend on the underlying layers. Therefore, several underlying

decentralized paradigms can be theoretically used without any variation in the

middleware layer. Consequently, developers dispose of a higher level of abstraction

when building wide-area distributed applications, since they can make good use of the

services provided by the middleware layer.

In order to materialize this thesis, we implemented the proposed middleware framework

on top of a relatively new paradigm of peer-to-peer networks, called structured peer-to-

peer networks. These networks have interesting properties which make them highly

suitable for the development of new distributed services.

The main contributions of our wide-area middleware proposal include the design and

definition of a brand new set of invocation abstractions for our remote object model; a

 vi

remote distributed interception algorithm; and a decentralized object location service.

We have also defined two new load balancing algorithms based on the primitives of the

remote object layer. As far as the reusable distributed component layer is concerned, our

main contribution is the adoption of a lightweight container model which allows

decentralized deployment and the activation of reusable components.

We also provide proof of the concept of our architecture with the implementation of

SNAP: a decentralized, fault tolerant and scalable Java Platform, Enterprise Edition

(J2EE) [46] web application deployment platform. The idea is to facilitate already

existing J2EE applications in a worldwide interconnected network, in the easiest

possible way, and by changing as little code as possible.

With the vision that we provide, we believe that developers will be able to produce

newly decentralized applications by investing a minimal amount of learning time in a

technology which surely still has much to show us.

 vii

 viii

Resumen

Los sistemas distribuidos han ido evolucionando ampliamente a lo largo de los últimos

años. Dependiendo del nivel de escalabilidad requerido, nos encontramos con diferentes

aproximaciones disponibles para el desarrollo de aplicaciones distribuidas. Para

soportar un número de usuarios relativamente bajo, existen modelos centralizados

cliente-servidor, que proporcionan un rendimiento aceptable, con una complejidad

arquitectural subyacente bastante simple.

A medida que las necesidades de utilización de una aplicación distribuida crecen,

probablemente su conjunto de usuarios destino también lo hace. Es en este punto en el

cual las soluciones centralizadas empiezan a presentar problemas de rendimiento debido

al conocido efecto de cuello de botella, donde el servidor central no es capaz de soportar

de una forma eficiente las necesidades de los usuarios. Como consecuencia de las

necesidades de escalabilidad, se tiende a descentralizar la lógica de proceso y de esta

forma se intenta minimizar el efecto de cuello de botella añadiendo más servidores

dedicados al procesamiento para que multitud de clientes no saturen a un único servidor

central.

Estas aproximaciones son adecuadas para aplicaciones que no necesitan ser

mundialmente escalables. Para tal efecto, el número de usuarios potenciales que las usan

se mantiene relativamente limitado y no excesivamente grande. De todas formas,

cuando se requiere conseguir una escalabilidad mundial, la descentralización se

convierte en una de las mejores opciones, pero introduce muchos desafíos que deben ser

tratados adecuadamente. Algunos de estos desafíos incluyen como proporcionar

tolerancia a fallos, como tratar las constantes salidas y entradas de nodos, y muchos

más.

El objeto de esta tesis es proponer un conjunto de elementos middleware para facilitar el

desarrollo de aplicaciones distribuidas que sean escalables mundialmente, dinámicas y

tolerantes a fallos. Para ello, se ha escogido como arquitectura subyacente un paradigma

totalmente descentralizado que garantice la escalabilidad de las aplicaciones a nivel

mundial. Dicho middleware se sustenta en tres pilares básicos necesarios para su

correcto funcionamiento. Por una parte necesitamos disponer de una capa de

enrutamiento de mensajes eficiente, por otra parte se requiere una capa que proporcione

servicios de multicast a nivel de aplicación, para conseguir comunicaciones uno-a-

muchos eficientes, y un servicio de persistencia descentralizado que permita almacenar

y recuperar datos.

Utilizando estas tres primitivas, conseguimos construir una plataforma de middleware

para aplicaciones distribuidas de área extensa basada en una capa de objetos remotos y

otra de componentes distribuidos reutilizables. La idea es que las funcionalidades de

estas dos capas sean lo más genéricas posibles de forma que no dependan de las capas

inferiores. De esta forma, teóricamente se pueden utilizar diferentes paradigmas

descentralizados por debajo sin que varíe para nada la capa de middleware. Por tanto,

los desarrolladores disponen de un mayor nivel de abstracción a la hora de construir

 ix

aplicaciones wide-area, ya que pueden utilizar los servicios que les proporciona la capa

de middleware.

Para materializar la propuesta de esta tesis, hemos implementado la plataforma de

middleware propuesta sobre un nuevo paradigma de redes peer-to-peer llamadas redes

peer-to-peer estructuradas. Este tipo de redes ofrecen interesantes propiedades que las

hacen muy adecuadas para el desarrollo de nuevas aplicaciones distribuidas.

Las principales aportaciones de la propuesta de middleware para aplicaciones de ámbito

extenso de esta tesis incluyen el diseño y definición de un conjunto nuevo de

abstracciones de invocación para nuestro modelo de objetos distribuido, un algoritmo de

intercepción distribuida de objetos descentralizado, y un servicio de localización

descentralizada de objetos. Además, se definen dos nuevos algoritmos de balanceo de

carga basados en las primitivas ofrecidas por la capa de objetos remotos. Respecto a la

capa de componentes distribuidos reutilizables, nuestra principal contribución es la

adopción de un modelo de contenedor ligero que permite el despliegue y activación

descentralizada de componentes.

Presentamos también una prueba de concepto de nuestra arquitectura propuesta con la

implementación de SNAP: una plataforma de despliegue de aplicaciones web J2EE

descentralizada, tolerante a fallos y escalable. La idea es que mediante SNAP los

desarrolladores que provengan del mundo J2EE puedan desplegar sus ya existentes

aplicaciones en una red mundial interconectada, de la forma más sencilla posible, y

cambiando el mínimo código posible de sus aplicaciones.

Con la visión concreta que proporcionamos, creemos que el desarrollo de nuevas

aplicaciones descentralizadas puede estar al alcance de la mano de la mayoría de los

desarrolladores inviertiendo un tiempo de aprendizaje mínimo en una tecnología que en

el futuro seguro que nos depara más sorpresas.

 x

 xi

Agraïments

Suposo que gran part de la meva vida actual estigui condicionada a la informàtica depèn

del fet que el meu pare em comprés, quan jo era molt petit, un ordinador Amstrad

CPC6128, amb unitat de disc – que en aquells temps ja era un gran avanç. D‘aquesta

manera no vaig haver de sofrir les lentes càrregues des de la cinta de cassette, la qual

cosa ja era un gran què. De bon principi em va entusiasmar tant aquest món que no

podia parar d‘aprendre‘n cada cop més. Tant era així, que a casa em renyaven i em

limitaven les hores que podia passar davant de la pantalla… De totes maneres no vaig

escarmentar, i aquí estic, havent escrit la tesi doctoral i culminant la meva carrera en

aquesta ciència que m‘apassiona. Així doncs, el primer agraïment és per la meva família

per haver-me donat tot el que estava a les seves mans per poder dedicar-me al que

m‘agrada i poder-m‘hi guanyar la vida dignament. Pare, siguis on siguis, sé que estaries

orgullós de mi.

Per descomptat, aquest esforç no hauria estat el mateix sense l‘estimació i el suport

constant de la Mireia, que ha vist com aquesta tesi ens robava massa hores, però no ha

dubtat en donar-me ànims i acompanyar-me en molts dels viatges a congressos que he

participat, encara que la temàtica no fos gaire del seu agrat.

Evidentment, també he d‘agrair als membres del grup d‘Arquitectura i Serveis

Telemàtics de la Universitat Rovira i Virgili el seu suport, amistat, convivència… i

perquè no, les farres, sopars i bon rotllo que hem viscut. Ha estat molt gratificant veure

l‘evolució del grup, des de la seva fundació (on vaig començar tot sol al Laboratori

135), fins a la seva consolidació actualment al Laboratori 144. Quin canvi… i per a

millor! També voldria agrair especialment el suport del Rubén, treballador infatigable,

el qual m‘ha ajudat molt amb les seves aportacions, idees i treball. Una part d‘aquesta

tesi també és teva.

He d‘agrair a l‘Antonio el fet d‘haver confiat en mi i també per les seves crítiques,

sempre constructives, a l‘hora de redactar els papers, així com aquesta tesi. També

voldria agrair al Robert el seu constant suport i indicacions a l‘hora de prendre certes

decisions que ara que les veig en perspectiva, considero encertades.

Finalment, no podia deixar d‘agrair al Pedro, director i amic, el seu suport incondicional

al llarg de tots aquests anys. De fet, la seva empenta i optimisme van fer que decidís fer

el doctorat. El camí ha estat llarg, i he passat moments d‘estar a punt de llençar la

tovallola… Pedro, moltes gràcies per haver confiat en mi i per ajudar-me en els

moments en què les coses no acabaven de sortir. No sé si sense el teu constant suport

aquesta tesi hauria estat posible.

Gràcies a tots sincerament.

 xii

 xiii

Acknowledgements

I guess that a great deal of my life has been related to Computer Science because my

father bought me an Amstrad CPC6128 computer with a floppy disk drive when I was a

little boy. For this reason, I have never had to suffer incredibly long tape drive loading.

From the very beginning I was so keen on this world that I could not stop learning more

and more day after day. I was so enthusiastic that I was often told off by my parents,

and the time I used to spend in front of the screen was regularly limited. However, I did

not learn the lesson, and here I am: I have just written my PhD thesis and I am at the

peak of my career in the science that I love. Therefore, the first acknowledgement goes

to my family, for giving me everything that they could so that I could do what I liked,

and I can now earn my living from such an enjoyable job. Dad, wherever you are, I

know you would be proud of me.

Naturally, this effort would have not been the same without Mireia's love and

encouragement. She has seen how this thesis has taken too many hours away from us.

Yet she has never hesitated to cheer me up and come with me on many trips to the

conferences I have participated in, although the topics were not much to her liking.

I would like to acknowledge the members of the research group Architecture and

Telematic Services at the Rovira i Virgili Unversity for their support and friendship, and

particularly the parties, the dinners and the good atmosphere. It has been very gratifying

to see how the group has evolved from the very beginning (when I was all by myself in

Laboratory 135), and has now consolidated in Laboratory 144. What a change, and for

the better! I would also like to thank Ruben, an incredible, tireless worker, who has

helped me a lot with his contributions, ideas and work. Part of this thesis is also yours.

My thanks also go to Antonio, for trusting me and always providing constructive

criticism when I wrote papers and this thesis, and Robert for his constant support and

guidance when I had to make decisions. In perspective, I seem to have made the right

choice.

Finally, I cannot end without thanking Pedro – director and friend – for his

unconditional support throughout these years. In fact, his optimism and encouragement

made me decide to do my PhD. The path has been long, and at certain points I was

tempted to give up. Pedro, thank you so much for trusting me and helping me at those

moments when things were not going just right. I do not know if I would have made it

without your constant support.

I thank you all sincerely.

 xiv

 xv

Table of Contents

1 INTRODUCTION AND OBJECTIVES .. 25

1.1 THE WIDE-AREA MIDDLEWARE SCENARIO ... 25
1.2 REQUIREMENTS .. 26

1.3 OBJECTIVES ... 29
1.4 PROPOSED SOLUTION AND CONTRIBUTIONS .. 30

1.5 THESIS STRUCTURE .. 33

2 OVERVIEW AND BACKGROUND ... 35

2.1 WIDE-AREA APPLICATION REQUIREMENTS ... 36
2.2 PROPOSED ARCHITECTURE ... 39

2.3 BACKGROUND .. 41
2.3.1 Peer-to-Peer Wide-Area Routing Substrates .. 41

2.3.1.1 The First Generation: Central Index Location Scheme ... 44
2.3.1.2 The Second Generation: Unstructured Peer-to-Peer Networks 46

2.3.1.2.1 JxTA .. 49
2.3.1.3 The Third Generation: Structured Peer-to-Peer Networks 52

2.3.1.3.1 CAN .. 56
2.3.1.3.2 Chord ... 57
2.3.1.3.3 Pastry ... 59
2.3.1.3.4 Tapestry ... 62
2.3.1.3.5 Bamboo ... 63
2.3.1.3.6 Symphony .. 64

2.3.2 Wide-Area Application-Level Multicast ... 66
2.3.2.1 Reference Model .. 67
2.3.2.2 Event Systems Review .. 68

2.3.3 Wide-Area Persistence Systems Architectures .. 70
2.3.3.1 CFS .. 71
2.3.3.2 OceanStore ... 73
2.3.3.3 PAST ... 74
2.3.3.4 OpenDHT... 75
2.3.3.5 Bunshin .. 77

2.4 RELATED WORK IN WIDE-AREA MIDDLEWARE SYSTEMS 79
2.4.1 Traditional Distributed Middleware Overview ... 79

2.4.2 Globe ... 80
2.4.3 Legion ... 81

2.4.4 JxtaJeri .. 82

 xvi

2.4.5 The Peer-to-Peer Sockets Project... 82

2.4.6 The Common API for Structured Overlays ... 83
2.4.7 Grid Computing ... 85

2.4.8 Wide-Area Component-Based Architectures .. 88
2.5 CONCLUSIONS .. 88

3 WIDE-AREA MIDDLEWARE PROPOSAL .. 92

3.1 INTRODUCTION ... 92

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 95
3.2.1 Innovative Services .. 96

3.2.1.1 p2p Call Abstractions.. 96
3.2.1.2 Decentralized Object Location Service .. 100
3.2.1.3 Distributed Interception .. 103
3.2.1.4 Load Balancing Service .. 105

3.2.1.4.1 Decentralized load balancing management .. 105
3.2.1.4.2 Interceptor-based load balancing management ... 106

3.2.2 Additional Services .. 107
3.2.3 Proof-of-Concept Implementation: Dermi .. 108

3.2.3.1 Churn and Failure Handling .. 111
3.2.3.2 Validation... 112

3.2.3.2.1 Experimental measurements.. 112
3.2.3.2.1.1 Direct Synchronous Calls .. 112
3.2.3.2.1.2 Synchronous Multicall .. 113
3.2.3.2.1.3 Anycall ... 113
3.2.3.2.1.4 Manycall .. 114
3.2.3.2.1.5 Decentralized load balancing scheme ... 114

3.2.3.2.2 Simulation Results .. 115
3.2.3.2.2.1 Distributed Interception ... 115
3.2.3.2.2.2 Interceptor-based Load Balancing Scheme ... 117

3.2.3.2.3 Discussion .. 118
3.3 THE WIDE-AREA DISTRIBUTED COMPONENT MIDDLEWARE LAYER 119

3.3.1 Architecture and Services .. 120
3.3.1.1 Decentralized Component Location and Deployment .. 121
3.3.1.2 Decentralized Lightweight Container Model ... 122

3.3.1.2.1 Component Life Cycle Service .. 122
3.3.1.2.2 Component Persistence ... 124
3.3.1.2.3 Adaptive component activation ... 125

3.4 PROSPECTIVE USES OF OUR PROPOSED WIDE-AREA MIDDLEWARE 126
3.4.1 A Sample Distributed Computing Application Scenario 129

3.5 SUMMARY .. 130

4 APPLICATIONS OF OUR MIDDLEWARE: SNAP 134

4.1 INTRODUCTION ... 134
4.2 RELATED WORK ... 135

4.3 ARCHITECTURE .. 137
4.3.1 Peer-to-Peer Routing Layer ... 137

4.3.2 Dermi and p2pCM Layers .. 138
4.3.3 Lightweight Web Server Layer and SNAP’s Core Layer 138

4.4 INNOVATIVE SERVICES ... 139
4.5 SNAP‘S USE CASE SCENARIO... 143

4.6 EMPIRICAL EVALUATION .. 146
4.7 PROSPECTIVE USES OF SNAP ... 149

4.8 SUMMARY .. 153

5 CONCLUSIONS AND FUTURE WORK .. 156

5.1 CONCLUSIONS .. 156

 xvii

5.2 FUTURE WORK ... 159

5.2.1 The p2pWeb Model .. 159
5.2.2 Peer-to-Peer Middleware for providing Autonomic Computing 160

6 PUBLICATIONS .. 163

6.1 DERMI REMOTE OBJECT MIDDLEWARE ... 163

6.2 P2PCM COMPONENT-BASED MIDDLEWARE .. 164
6.3 PLANETDR AND SNAP... 165

7 REFERENCES .. 168

ANNEX A. DERMI’S INSIGHTS .. 179

A.1 APPLICATION PROGRAMMING INTERFACE ... 179
A.1.1 Core Classes .. 179

A.1.1.1 RemoteEventListener.. 179
A.1.1.2 ERemote and EInterceptor .. 179
A.1.1.3 EventServer .. 180
A.1.1.4 DermiConnection ... 180
A.1.1.5 Session ... 183
A.1.1.6 DermiRemoteObject ... 183
A.1.1.7 DermiRemoteInterceptorObject .. 184
A.1.1.8 Registry .. 184
A.1.1.9 DermiProxy .. 185
A.1.1.10 RemoteException ... 186

A.1.2 Programming Dermi .. 186
A.1.2.1 Defining a Remote Object ... 186
A.1.2.2 Defining anycall methods ... 188
A.1.2.3 Defining manycall methods .. 190
A.1.2.4 Working with the Decentralized Object Registry ... 190
A.1.2.5 Implementing Distributed Interception Objects.. 191
A.1.2.6 Defining Replicated Objects ... 192

ANNEX B. P2PCM’S INSIGHTS .. 195

B.1 APPLICATION PROGRAMMING INTERFACE ... 195

B.1.1 Core Classes .. 195
B.1.1.1 ComponentInterface ... 195
B.1.1.2 Component ... 195
B.1.1.3 ComponentControl ... 196
B.1.1.4 ComponentFactory ... 198
B.1.1.5 ComponentUtil ... 198
B.1.1.6 Exceptions .. 198

B.1.2 Programming p2pCM .. 199
B.1.2.1 Defining a Remote Component ... 199
B.1.2.2 Component Deployment / Undeployment .. 202
B.1.2.3 Component Instantiation ... 202
B.1.2.4 Stateful Components ... 204

ANNEX C. SNAP’S INSIGHTS ... 205

C.1 APPLICATION PROGRAMMING INTERFACE ... 205
C.1.1 Core Classes .. 205

C.1.1.1 IApplication ... 207
C.1.1.2 Application ... 208
C.1.1.3 Context... 208
C.1.1.4 SnapAppStartup.. 208
C.1.1.5 StartupServlet ... 209
C.1.1.6 SnapDataSource ... 209
C.1.1.7 DBInterceptor ... 209

 xviii

C.1.1.8 SnapDeployer ... 209
C.1.1.9 Exceptions .. 209

C.1.2 The Database Engine: HSQLDB-WAN... 210

C.2 PROGRAMMING SNAP .. 212
C.2.1 Web Application Adaptation .. 212

C.2.1.1 Static Web Applications.. 212
C.2.1.2 J2EE Web Applications .. 213

C.2.2 Web Application Deployment ... 215
C.2.3 Accessing SNAP applications ... 217

GLOSSARY .. 221

 xix

List of Figures

Figure 2.1. Proposed Generic Wide-Area Middleware Model Architecture 40
Figure 2.2. Peer-to-Peer network architecture .. 43

Figure 2.3. Napster's Architecture ... 45
Figure 2.4. Unstructured Topology of a Gnutella Network .. 48

Figure 2.5. Resource location via flooding on an Unstructured Peer-to-Peer Network . 49
Figure 2.6. Distributed Hash Table abstraction .. 53

Figure 2.7. CAN Lookup Example .. 57
Figure 2.8. A Chord ring consisting of many nodes ... 59

Figure 2.9. State of a hypothetical Pastry node .. 60
Figure 2.10. Pastry State and Lookup .. 61

Figure 2.11. Tapestry routing example .. 62
Figure 2.12. Neighbours in Pastry and Bamboo ... 63

Figure 2.13. CFS replication algorithm ... 72
Figure 2.14. OpenDHT architecture .. 76

Figure 2.15. Common API Diagram .. 83

Figure 3.1. Our proposed Wide-Area Middleware Architecture 93
Figure 3.2. Our Remote Object Middleware‘s p2p call abstractions 96

Figure 3.3. Multicall abstraction .. 98
Figure 3.4. Anycall example ... 99

Figure 3.5. Definition of anycall methods in a remote object's interface 100
Figure 3.6. Example of object handle insertion and location 102

Figure 3.7. Binding and looking up an object from the decentralized object location

service ... 102

Figure 3.8. Distributed interception algorithm ... 104
Figure 3.9. Binding an interceptor to an already running object 104

Figure 3.10. Example of a decentralized and interceptor-based load balancing scheme

 .. 107

Figure 3.11. Dermi architecture diagram and how it fits within the Common API for

Structured Overlays ... 110

Figure 3.12. Distributed Interception Simulations ... 116
Figure 3.13. Interceptor-based load balancing simulation .. 117

Figure 3.14. Diagram of the Wide-Area Component Model‘s architecture................. 124
Figure 3.15. Adaptive component activation scheme ... 126

 xx

Figure 3.16. Component diagram of the p2pCM‘s sample distributed computing

application... 130

Figure 4.1. SNAP‘s architecture diagram .. 138
Figure 4.2. SNAP Deployer splash screen ... 139

Figure 4.3. SNAP Deployer Wizard .. 140
Figure 4.4. SNAP‘s Decentralized Application Locator ... 141

Figure 4.5. Sample deployment descriptor file for any SNAP Application (snap-

war.xml) .. 144

Figure 4.6. SNAP Web application access times ... 147

Figure A.1. Dermi‘s Class Diagram .. 182
Figure A.2. Interface of a Dermi Remote Object ... 187

Figure A.3. Implementation of a Dermi Remote Object ... 188
Figure A.4. Definition of anycall methods in a remote object's interface 189

Figure A.5. Sample anycall Dermi application class diagram 189
Figure A.6. Definition of manycall methods in a remote object's interface................. 190

Figure A.7. Binding an object into the decentralized object location service 191
Figure A.8. Looking up an object from the decentralized object location service 191

Figure A.9. Implementing a distributed interceptor object ... 192
Figure A.10. Binding an interceptor to an already running object 193

Figure A.11. Object replication example ... 194

Figure B.1. p2pCM Class Diagram ... 197
Figure B.2. Implementation of a component‘s factory class 200

Figure B.3. A p2pCM component interface ... 201
Figure B.4. A p2pCM component implementation .. 202

Figure B.5. Deploying a p2pCM component ... 202
Figure B.6. A p2pCM component instantiation ... 203

Figure B.7. Sample p2pCM Application Class Diagram .. 204

Figure C.1. SNAP‘s API. Interface IApplication ... 206
Figure C.2. SNAP‘s Introspection API usage .. 207

Figure C.3. SNAP‘s Class Diagram ... 207
Figure C.4. HSQLDB-WAN Class Diagram ... 211

Figure C.5. SNAP Deployer option window .. 217
Figure C.6. SNAP‘s Home Page.. 218

 xxi

List of Tables

Table 2.1. Services present in JxTA .. 51

Table 2.2. Comparison of different p2p resource-location architectures 55
Table 2.3. Comparison of various structured overlay protocols 56

Table 2.4. Pastry's exposed API .. 61
Table 2.5. Comparison of event systems ... 69

Table 2.6. Comparison of the wide-area persistence systems analyzed 70
Table 2.7. CFS software layering .. 71

Table 2.8. PAST exposed API ... 75
Table 2.9. Common API's Tier 1 API .. 84

Table 2.10. Common API's Tier 0 API .. 85
Table 2.11. Comparison of the different Wide-Area Middleware approaches 89

Table 3.1. Performance of one-to-one direct synchronous calls 112

Table 3.2. Performance of one-to-many multicalls .. 114
Table 3.3. Performance of anycalls ... 114

Table 3.4. Performance of the decentralized load balancing scheme 115

 xxii

 xxiii

Programming today is a race between software engineers striving to build bigger and

better idiot-proof programs, and the Universe trying to produce bigger and better

idiots. So far, the Universe is winning.

Rick Cook, The Wizardry Compiled

If the automobile had followed the same development cycle as the computer, a Rolls-

Royce would today cost $100, get a million miles per gallon, and explode once a year,

killing everyone inside.

Robert X. Cringely, InfoWorld magazine

Tended a ser un poco aprendices de todo, para vuestro bien, y maestros en algo, para

bien de los demás.

Pere Puig Adam, Matemático y maestro de matemáticos

 xxiv

25

Chapter One

1 Introduction and Objectives

1.1 The Wide-Area Middleware Scenario

Over the years, the Internet has been growing steadily in its number of users and

nowadays its ubiquitous nature is well-assumed by everybody. Network bandwidth has

increased considerably and the emergence of many successful wide-area applications

has made it more and more popular. Apart from network bandwidth itself, computers

have greater overall capacity and their resource sharing capabilities are improving day

by day.

When creating global-scale Internet-based distributed applications, developers

repeatedly face the same implementation issues: object location, replication, mobility,

caching, etc. Middleware plays a key role in addressing these challenges because it

provides a common higher-level interface for application programmers and hides the

complexity of myriad underlying networks and platforms. Middleware systems have a

long tradition in centralized client–server environments, but there are very few globally

scalable middleware solutions.

The distributed object-oriented middleware frameworks that get the most attention are

those that model messaging as method calls. These systems are often called Remote

Procedure Call (RPC) [113] systems. The major benefit of these systems is that they

make remote procedure (or method) calls appear to be local procedure calls (LPCs).

This is a powerful abstraction that considerably simplifies the development of remote

applications. Mature examples of this middleware are the Common Object Request

Broker Architecture (CORBA) [36], Java Remote Method Invocation (RMI) [47] or the

Distributed Component Object Model (DCOM) [32], deprecated by Microsoft‘s .NET

Framework [54].

Message Oriented Middleware (MOM) has recently received considerable attention

because of its decoupled nature, which nicely solves asynchronous one-to-many

interactions and highly dynamic distributed environments. Unlike RPCs, MOMs do not

model messages as method calls; instead, they model them as events in an event

delivery system. Clients send (produce) and receive (consume) events, or messages, and

producers and consumers do not explicitly know each other. All applications

26 CHAPTER 1. INTRODUCTION AND OBJECTIVES

communicate directly with each other using the MOM. Messages generated by

applications are meaningful only to other clients, because the MOM itself is only a

message router.

Nevertheless, distributed object-oriented frameworks and MOMs are still almost

isolated worlds that do not fully benefit from each other‘s unique advantages and

concepts.

Architecturally, both middleware approaches are mostly built on top of centralized

client/server models, and this is proven to work well in local-area or even metropolitan-

area environments. However in wide-area settings, these platforms clearly suffer from

scalability problems, although these can be solved by forming cluster topologies among

servers. This option may not be economically viable in all cases. The current trend is to

head towards decentralized models which benefit more from the computing at the edge

paradigm, where resources available from any computer in the network can be used and

are normally made available to their members.

Therefore, there is a need for a middleware platform that can be used to develop

worldwide oriented distributed applications. This middleware must be scalable, provide

fault tolerance, be able to adapt to continuous node joins and leaves in the network,

provide high availablity guarantees, and be a good use maker for the computational

resources available on the edges of the Internet. Do any of the available middleware

systems comply with all these requirements? The answer is mainly no.

Existing middleware approaches for wide-area scale applications do not provide all of

these services. Therefore, a great deal of time must be invested in providing such

guarantees first. Sometimes, it is very difficult or practically impossible to comply with

these requirements. Therefore, we propose that a middleware framework be created for

developing distributed applications that run on top of very dynamic and changing

environments. This approach fulfills our requirements, thus allowing developers to

concentrate on the application itself, and not on the underlying common services.

1.2 Requirements

The creation of a wide-area middleware platform is a complex challenge, and requires a

set of basic features, which means that a variety of problems must be overcome. We

need to fulfil the following requirements:

 Scalability. Any wide-area middleware needs to be scalable, so that it can

support applications which may require global-scale concurrent access and

utilization. There are a wide variety of client-server middleware approaches.

However, the platforms suffer from scalability problems, since the server itself

becomes the bottleneck of the whole architecture. One solution to this came in

the form of the clustering or federation of servers. Following a decentralization

pattern, servers are made redundant so when one becomes unavailable, another

one can take its place. There are several variants of this system, where requests

can be redirected to one server or another, depending on their load, or simply in

a sequential order. Nevertheless, this redundant server alternative is normally

expensive to achieve and maintain.

1.2 REQUIREMENTS 27

Taking this decentralization trend to its logical conclusion involves a pure

decentralized architecture. In this system, all members behave in the same way

as peers. Therefore, each of these peers can perform the same functions as

another peer. As a consequence, no single entity is more powerful than any

other. This scheme provides the best scalability, but communication mechanisms

must be efficient enough to make performance acceptable.

 Fault tolerance. We require our wide-area distributed applications to be as fault

tolerant as possible. This feature allows graceful recovery from errors, and it is

aimed to be provided by the middleware layer in a transparent way. Therefore,

we need to assure that all possible resources can be located at all times. Our

network routing layer should be aware of possible failures, and should be smart

enough to avoid these failures by re-routing messages appropriately.

 High availability. This requirement is a consequence of fault tolerance. High

availability refers to the fact that access to any resource must be guaranteed at all

times. Therefore, we need to have a transparent mechanism that can guarantee

access to resources at any time. The idea of high availability usually comes in

the form of data replication. So if there is some redundancy, the guarantee of

high availability improves.

Therefore, we should provide some redundancy or replication of resources so as

to permit high availability. In order for this redundancy to be kept synchronized,

we need efficient state change notifications. Since propagating state from one

object to each of its replicas is going to be a usual task, we require a group

communication service. This service should use the multicast primitive, which

allows notifications to be sent from one source to many targets.

There are several ways of providing this service. The first is IP Multicast [51].

IP Multicast is a method by which a message can be sent simultaneously to

several computers, not just one. In order to do this, the message is sent to a range

of addresses reserved for multicast groups (224.x.x.x-239.x.x.x). Each computer

must also decide whether or not it wishes to be part of a specific group.

The main problem of IP Multicasting is that it is only supported by a few routers

in the Internet. Therefore, this alternative is too impractical to be used. In order

to provide the same functionality as IP Multicasting, application-level multicast

solutions allow the same multicasting features at the application level. Events

and messages can be relayed from origin to destination by an application

specific component, called the event bus.

Centralized event systems have proven to be a very useful group communication

middleware in the design of distributed applications. The distributed information

bus (event bus) is responsible for transmitting to subscribers events thrown by

producers based on the information contained in these events.

Unfortunately, the same scalability limitations apply to group communication

middleware, so, when scaling up, client-server solutions are not suitable because

the event server may become a bottleneck when dealing with millions of

28 CHAPTER 1. INTRODUCTION AND OBJECTIVES

simultaneous notifications. Therefore, we sketch the need for such a service, not

only for replica state propagation, but for any global scale group communication

our middleware offers to higher level layers.

 Load balancing. Load balancing‘s main aim is to distribute processing and

communication activity evenly across a computer network so that no single

device is overwhelmed. This service is especially important for networks in

which it is difficult to predict the number of requests that will be issued to a

node, and this is the case of our scenario. Sometimes, a specific resource may be

requested by many nodes, swamping the responsible node (the Britney problem).

In order to avoid such a problem, load must be evenly distributed to other nodes

holding replicas of the resource (linked to the high availability requirement).

Even though an efficient group communication service is needed for our

middleware if one-to-many notifications are to be propagated, this scenario can

be further enriched, and related to the the requirement we are describing. We

could think about benefiting from other primitives (if available), like anycast

[53]. Anycast allows messages to be delivered to the closest member of a

multicast group, where closeness is defined in terms of a particular metric (for

example, network proximity).

This primitive can be used to construct a load balancing service that our

middleware can offer transparently to the upper layers. For example, requests

can be directed to a group member and, if it is overwhelmed, re-routed to the

closest member, by following an anycast pattern.

 Dynamicity. Our middleware must guarantee dynamicity. This feature accounts

for the fact that the members of the network do not usually remain constant. The

routing substrate must allow for this behaviour. Therefore, it must guarantee that

resources are moved from nodes when they leave, and that new responsibilities

are assigned to newcoming nodes. Since our middleware targets highly dynamic

environments, the routing substrate must provide the necessary primitives to

guarantee this feature without losing data.

 Make good use of the computational resources on the edges of the Internet.

This requirement is closely related to scalability. We want our middleware to

make the most of each of the nodes connected to the network. In traditional

client-server architectures, the majority of resources for an application‘s

execution are managed and hosted on the main server. Therefore, any persistent

data, state change, or complex calculation is performed on the server. Clients

interact only with the server to provide it with the necessary data, but little

business logic is performed on them. If we imagine the huge number of clients

throughout the Internet, it is easy to see that most of their resources are largely

not utilized. These resources, the resources of the edges of the Internet could be

made available to others in order to contribute to a larger network of peers.

This idea is not new, since several already available applications have exploited

this paradigm (for example, SETI@Home [41], United Devices Cancer Research

Project [23], Folding@Home [16], or even the ubiquitous eMule [15]).

However, we consider this requirement a must for a wide-area middleware, since

1.3 OBJECTIVES 29

we cannot rely on resources scattered on a single remote server. Resources must

be contributed and managed by the whole community.

 Usability and Programming Abstractions. Middleware solutions should never

forget their target users, and therefore never underestimate the importance of

their own ease-of-use. It is not sufficient for a middleware to just implement all

the functionality required for building applications; it should also be easy to use.

Implementing applications should be as easy as possible, and both the

middleware and the applications developed should be easy to deploy and

manage. It is also important to distinguish which programming abstractions are

available to the developer in order to work with the middleware. Categorization

may include availability of remote objects or components, object location

facilities, group communication primitives, etc.

Analyzing all these requirements, we propose three important core components on

which our middleware proposal will be based: a wide-area efficient communication

substrate, which allows inter-node communication, a wide-area efficient application-

level multicast service, providing the necessary tools to propagate notifications from

one source node to many, and a wide-area persistence layer, which permits persitent

information to be stored and retrieved on top of a decentralized infrastructure. These

three main pillars are crucial for fulfilling the above mentioned set of requirements.

1.3 Objectives

All the above information shows that it is not easy to develop wide-area applications on

top of a wide-area routing network, since no middleware infrastructures are available.

This gives developers the problem of re-implementing common services over and over

again, thus wasting precious programming time which could be dedicated to other

matters.

In this study, we aim to propose a developer framework suitable and flexible enough to

allow wide-area application development and deployment on top of a worldwide

scalable peer-to-peer network infrastructure.

Therefore, the objectives of this thesis are to facilitate the creation and deployment of

wide-area scope distributed applications. To achieve this, we require a middleware

approach which abstracts all common services needed by developers, so that

implementing a distributed application on top of a peer-to-peer substrate is as easy as

possible. Indeed, achieving this ambitious goal is a complex matter, so we have adopted

a bottom-up strategy which starts from the lowest level and scales up. In this way,

complexity is increasingly hidden from the developer. In this study, we plan to achieve

the following goals:

 Define a layered architecture which makes it easy to modularize the

development of wide-area applications. This architecture must simplify the

development and deployment of applications and their inner components, and

uniformize access to common services.

30 CHAPTER 1. INTRODUCTION AND OBJECTIVES

 Define a complete component and application development model, abstracting

the underlying layer complexities, and even allowing these components /

applications to be deployed in the proposed framework. This model must

contain the complete development cycle of an application, and enable generic

templates to be used, which simplify the development cycle.

 Implement the proposed generic model by means of two core layers that contain

remote objects and a reusable wide-area component framework. Thus, we

demonstrate the viability of our theoretical model.

 The proof of the concept of our proposed model comes in the form of a wide-

area application deployment infrastructure, which makes use of all the services

provided by the remote object and component layers. We demonstrate the

genericity of our proposed framework and its applicability in heterogeneous

environments.

1.4 Proposed Solution and Contributions

On the basis of the objectives listed above, we plan an approach to the problem which

has the next phases:

 Definition of a generic architecture model made up of different layers which

provides a set of generic common services. This model must be generic enough

to be applied to a variety of software designs.

 Analysis of the routing substrates available which can provide worldwide

application scalability for the model defined above. We also analyze the state of

the art in the set of wide-area common services targeted to facilitate the design

of global distributed applications.

 Design and construction of the proposed generic model by means of two

complementary middleware approaches: remote objects and distributed reusable

components. The remote object layer provides the foundations and most

important innovative services for the component layer. This component layer

allows the lightweight components to be defined and deployed. These

components can later be reused to provide a higher level of abstraction to

compose wide-area distributed applications.

 Our first contribution is the definition of a new set of remote object

invocation abstractions. We have defined a lower-level core of remote object

functionalities (whose practical implementation is called Dermi). This

provides the traditional object-to-object (one-to-one) remote method

invocations. It also provides object-to-objects (one-to-many) calls by using a

wide area application-level multicast communications bus. If this underlying

information bus also provides us with network proximity-aware primitives

such as anycast, we can also provide the anycall and manycall abstractions.

Such remote method invocation techniques allow a method to be invoked on

one of the nearest objects which complies with a parameterized condition.

1.4 PROPOSED SOLUTION AND CONTRIBUTIONS 31

Moreover, hopped calls allow for fault tolerance when invoking methods on

dead objects: if another live replica of the object exists, it responds to the

call. It is important to recall that such invocation abstractions aim to be

generic in the sense that they are not closely coupled to a specific underlying

information bus or routing substrate. Therefore, the underlying layers can be

switched for others with the same functionalities, though the same interfaces

must be respected.

 Our second contribution is the definition of a decentralized object location

service. This service allows remote objects / components / applications to be

located and inserted into our decentralized generic model. It is similar to any

naming service, but provides a fault tolerant and scalable level of indirection.

Any object data can be stored and located later by using simple bind() and

lookup() primitive operations. One of the major advantages of this service is

that it is inherent to the Key-Based Routing substrate (KBR) we use.

Nevertheless, its definition is generic enough to allow other routing substrate

algorithms to be used, and only requires that they follow the same

Application Programming Interface (API) contract.

This service is closely related to the decentralized persistent layer of our

model. Any persistent data to be stored is recorded in a decentralized way, as

are object or component handles. In order to support fault tolerance, data is

replicated among a specified number of nodes. A set of algorithms is used to

take care of bottlenecks and node overwhelming.

 Our third contribution is the distributed interception service. By means of

the underlying information bus, we provide primitives that easily intercept

remote object calls, like in Aspect Oriented Programming (AOP) techniques.

Therefore, invocations to remote objects can be captured, analyzed,

transformed, and even discarded. This service provides runtime interception

with no need to change either the source or the target object‘s code. Type-

compatible interceptors are therefore added or removed in runtime by calling

our model‘s interception service. This approach, for example, is used for

monitoring and providing load balancing to our objects or components.

 Our fourth contribution is the provision of wide-area load balancing

through interceptors or the anycall abstraction. Two ways of providing load

balancing in wide-area distributed objects and components are described.

Both these alternatives fit gracefully into our proposed generic middleware

framework for developing global distributed applications. Basically, these

two load balancing techniques target different domain areas. For those

scenarios in which each object is aware of its own load, the anycall-based

scheme enables the target object to be selected by letting each target node

decide. This approach is rather stateless and provides proximity aware

support. The alternative scheme uses an interceptor to determine the state of

each of the objects to load balance. Requests are directed to the interceptor

which forwards the invocations to the less loaded object server (thus defining

what load policy is to be taken into account).

32 CHAPTER 1. INTRODUCTION AND OBJECTIVES

Both schemes are complementary and target different use cases, providing

the load balancing requirement with enough genericity and flexibility.

 Our fifth contribution is the adoption of a decentralized lightweight

container model for our component framework. The transition from remote

objects to distributed components is such that it provides a higher level of

abstraction to application developers. Therefore, we define a component-

based reusable layer, whose implementation is called p2pCM, which

presents an alternative way of holding any component‘s life cycle routines.

Distributed components are modelled as remote objects, including a life

cycle service, and a decentralized deployment and location service. Instead

of having a monolithic heavyweight container housing all the components,

we opt to make each of the nodes in the worldwide network a lightweight

container. Therefore, components are distributed throughout the network,

and benefit from the underlying services provided by the remote object layer.

 Finally, we present a proof of concept implementation which directly benefits

from the underlying framework services. This software application validates our

whole generic model and shows that it is appropriate for designing wide-area

scalable applications. We also introduce another prototype to demonstrate the

viability and genericity of our model.

 Our final contribution is the proposal of this wide-area application

deployment service. As a proof of concept for our generic wide-area

middleware model, we have developed an application which allows web

applications to be securely deployed on top of a worldwide network. This

platform (called SNAP) provides fault tolerance, persistence, interoperability

via web services, clustering, and other services to application developers.

The idea is that this platform enables new wide-area distributed applications

to be developed and deployed in a trauma-free way. Applications can be

developed with either Dermi or p2pCM primitives, or even following the

traditional client-server guidelines. Once the application is ready to be

deployed, it is automatically prepared to run on top of a worldwide network.

For instance, fault tolerance is automatically managed by activating

application replicas throughout the network. Therefore, should one

application node become unavailable, the application does not.

1.5 THESIS STRUCTURE 33

1.5 Thesis Structure

The structure of this thesis is summarized as follows:

Chapter 2 presents the big picture of our proposed generic model, and tries to establish a

reference model in which we expose the problem we are trying to solve. Therefore, we

present the requirements that a wide-area middleware should fulfill, and we observe that

the solution requires research into three main building blocks: available wide-area

routing substrates, wide-area application-level multicast infrastructures for message

dissemination, and wide-area persistence systems. First we explain and analyze the

available wide-area routing substrates and their properties, and then we go on to

describe decentralized solutions based on peer-to-peer models. Secondly, we describe

event-based architectures suitable for worldwide scalable applications and, finally, we

describe the available wide-area persistence systems which can be used to provide a

persistence layer and common services for our middleware. After describing this

background, we analyze previous related work in the field of wide-area middleware

solutions, and observe that the requirements discussed at the beginning of the chapter

canot be fulfilled. As a consequence, there is a need for a new wide-area middleware

proposal, which is described in the next chapter.

Chapter 3 is central to this thesis and describes our proposed model‘s most important

contributions: the architecture and innovative services of our wide-area remote object

middleware, as well as our reusable component layer architecture, based on the previous

object middleware. We outline the features and services these layers provide for

application developers and demonstrate the viability of our proposal by presenting our

practical implementation of the model in the form of Dermi and p2pCM. We also

present an empirical evaluation of these implementations. Finally, we summarize the

initial requirements and demonstrate that our middleware fulfills them all.

Chapter 4 introduces a proof-of-concept implementation which uses our generic

model‘s features. This application is called SNAP and is a wide-area application

deployment infrastructure. We introduce related work regarding this application, and

describe how it benefits from Dermi and p2pCM‘s services. We finish the chapter by

describing some other prospective uses for our wide-area middleware proposal.

Chapter 5 presents the conclusions derived from this work and a variety of possible

future research lines.

34 CHAPTER 1. INTRODUCTION AND OBJECTIVES

35

Chapter Two

2 Overview and Background

Because of the complexity of the problem to be solved, our work has been influenced

by highly heterogeneous research areas. As we shall explain below, we have been

heavily influenced by wide-area routing techniques, application-level multicast services,

decentralized persistence services, and software engineering theories applicable to

distributed systems.

As we mentioned in the previous chapter, our objective is to design a distributed

architecture oriented to the development of wide-area distributed applications.

Moreover, our intention is that this architecture be quite generic, use reusable code, and

provide easy access to commonly needed underlying services. These objectives are so

ambitious that several essential research fields must be studied and analysed if the

whole problem is to be understood.

This chapter is subdivided into four main blocks. First, we use current techniques to

analyze the requirements of today‘s wide-area applications, and existent problems.

Next, we give an overview of our generic model‘s proposed architecture. This approach

is useful to show our architecture‘s big picture, and it will be the join point for all of the

forthcoming blocks in this chapter and the whole thesis. This big picture, as well as the

requirements section, serves as an introduction to the three blocks in which our

middleware proposal lies. All these tiers act like pieces of a puzzle which fit together

and provide a set of common services to the upper-level layers. Therefore, this block is

essential if the proposed generic model is to be described, and the forthcoming sections

and chapters of this research work are to be fully understood.

The third block shows that our architecture proposal needs a scalable and efficient

routing layer, which acts as the core communication infrastructure for our proposal; an

upper event-based application-level multicast layer that allows efficient one-to-many

communication between different upper-level elements for our model; and finally, a

wide-area persistence service which makes it possible to store and look up data

efficiently by using the underlying routing layer.

After analyzing this background, the fourth block relates it closely to other work in the

wide-area middleware field. Finally we show that no solutions comply with all our

requirements.

36 CHAPTER 2. OVERVIEW AND BACKGROUND

2.1 Wide-Area Application Requirements

Wide-area applications are normally associated by the general public with those

applications which are accessible throughout the Internet. Most people consider that any

web page is a wide-area application. This is untrue. Even though the world wide web

(WWW) itself is an application that can be found over the world, it mainly follows a

centralized client-server architecture. This means that, in most cases, only one server is

backing up the whole web page or application. This, in turn, means that whenever the

server is down, access to the web page or application is impossible.

We are tired of navigating the web and finding the usual ―Server is not responding‖

error message. We obviously try again after a few minutes and, if we are lucky, we can

continue navigating. However, if we were in the middle of a transaction, say filling in a

form, we unfortunately observe that our data has very probably vanished. Generally

speaking, we observe that one of the most widely used applications of the Internet is not

fault tolerant. Non-scalability is also one of WWW‘s problems, since servers may stop

serving requests if they are overwhelmed with requests themselves or have exhausted

their computing capacity.

It is true that the WWW is accessible to the whole world but, in a sense, if the whole

world tries to use it at the same time, it is no longer accessible. Wide-area applications

should be accessible efficiently at any time, anywhere, by a massive number of

concurrent users.

It is expected that in a near future, ubiquitous network connections and interactions

between devices, systems, services, people, and organizations will be the rule rather

than the exception [59]. The realization of the full potential of all conceivable patterns

of interaction and collaboration will require a sophisticated global infrastructure, on top

of which service providers can develop their applications. However, today‘s

infrastructure is rudimentary, which makes the development of new services both

difficult and expensive. A new global infrastructure is needed to handle the sheer

complexity of new and varied models of interaction and collaboration.

As we have previously stated in Chapter 1, decentralized approaches are efficient at

providing such guarantees. As a matter of fact, the appearance of truly wide-area

applications has fostered the popularity of peer-to-peer networks, which have therefore

proven their stability and correctness as a wide-area substrate for global concurrent

access to resources [79].

Broadly speaking, the p2p applications community has focused on three different

application domains: computing, collaboration and file sharing. Computing, also known

as cycle-stealing or PC Distributed Computing uses otherwise-idle cycles on desktop

and laptop computers for large-scale computation. Condor [13], Entropia [67], United

Devices [23] and Data Synapse [14] are all examples of such p2p computing

applications. These systems have shown that for some problem domains, the volatility,

security and data distribution issues can be resolved so that PC Grids can compete in

performance with traditional cluster technology.

2.1 WIDE-AREA APPLICATION REQUIREMENTS 37

Peer-to-peer collaboration applications allow peers to construct and discover ad-hoc

groups, join and leave groups, and perform shared operations as a member of a group.

Groups may be long-lived, made up of friends, colleagues, and organizations or

everybody. Groups may also be very short-lived and spontaneous when they are groups

of people in the same place at the same time. Sun‘s JxTA [39], for example, builds

group support into the infrastructure, enabling applications to leverage this group

support. Groove Networks [24] is another example: they provide integrated solutions to

enable users on desktops or laptops to share and jointly work on documents.

The third class of applications [110] is perhaps a special case of the previous domain:

file sharing applications such as Napster [34], Gnutella [85], KaZaA [42], eMule [15],

BitTorrent [102], among others, enable a large number of users to share content. In

some cases, the content files are small (for example, music files or images), and the

challenge is to quickly locate any instance of the content among the copies that are

available at that instant; in other cases, the files are much larger and p2p technology is

used to stream the content to the user from nearby resources.

By analyzing these three use case scenarios in depth, we can determine the requirements

that are common to these kinds of applications in particular, and to wide-area

applications in general:

 They make good use of the resources available on the edges of the Internet.

To achieve their goals, applications should use resources that are available

throughout the network. These resources can include CPU processing power,

storage space, network bandwidth, etc. It is highly likely that a little power from

millions of machines together will be stronger than a few powerful servers.

 They promote collaboration among groups. People tend to merge into groups

of interest. Applications targeted to wide-area utilization must support such

requirements, since collaboration is widespread in human-to-human and human-

to-computer interaction.

 They provide resource sharing capabilities. This requirement is closely

related to using the resources on the edges of the Internet. Applications share the

resources of the whole community so that my resources can be used by other

peers.

 They provide fault tolerance, and make numerous resources available. It is

not enough for others to be able to share my resources. If I leave the network,

these resources should still be reachable. Applications need this requirement if

they are to continue working properly when members leave the network, or

when there are resource spikes, meaning that some kind of load balancing

strategy needs to be provided.

Even though these requirements may be enough for wide-area applications, we believe

that other points that are often not considered need to be improved. These can be

thought of as new requirements for the successful deployment of these kinds of

applications:

38 CHAPTER 2. OVERVIEW AND BACKGROUND

 New wide-area applications should be easy to develop. At the moment no

higher-level middleware solutions are available that make it easy. Developers

must implement a wide-area application practically with their bare hands. Some

lower-level middlewares exist, but their provided abstractions are limited to

socket, or message programming, which makes it tremendously complicated to

implement even the most trivial service. It is true that Groove Networks [24]

provides a framework for developing p2p collaborative applications, even

though it is based on a proprietary network infrastructure. However, Groove is

not suitable for building generic wide-area applications, since it is more focused

on enterprise collaboration matters, and cannot be considered as a global wide-

area middleware solution.

 Location awareness should be fostered. Because collaboration is a

requirement, we consider that wide-area applications should make it easy to

collaborate with close members. This requirement involves the notion of

location awareness, which is normally mapped to a proximity metric of network

distance. For example, we may want to find people interested in Bruce

Springsteen who are near us. Another example, involving file sharing

applications: we would probably like to retrieve large files from peers who are

close-by in terms of network distance to maximize efficiency.

 Connectivity should be maximized. The peers in p2p systems are typically

desktop computers running in a complex network environment. In home

networks, Internet service providers may block certain types of network traffic;

network address translators (NATs) and firewalls may hide resources behind a

common name; and even the network address of a peer may change quite

frequently. Corporate networks are also becoming quite complex and the issues

described for home networks are also challenges in companies. Wide-area

applications should try to overcome these problems in order to reach the

maximum number of peers without problems, thus maximizing resource sharing

and utilization.

 Security should be improved. Security in p2p systems normally focuses on

anonymity and user privacy. In order to achieve additional security, p2p systems

have developed such alternative mechanisms as community-based trust (user

ratings), and replication and verification. However, trying to provide strong user

identities, and trusted user proofs is a challenge, which can be desirable in some

wide-area applications. We mention this requirement, but it is left out of the

scope of this thesis.

By discussing all the requirements that a wide-area application should fulfill, we

conclude that they are similar to the requirements of a wide-area middleware (see

chapter above). Therefore, we introduce the need for three important core components

on which our middleware proposal will be based: a wide-area efficient

communication substrate, which allows inter-node communication, a wide-area

efficient application-level multicast service, which provides the necessary tools to

propagate notifications from one source node to many, and a wide-area persistence

2.2 PROPOSED ARCHITECTURE 39

layer, which permits the storage and retrieval of persitent information on top of a

decentralized infrastructure.

2.2 Proposed Architecture

As we have pointed out above, the aim of this research work is to develop a distributed

architecture oriented to the development of wide-area distributed applications. We want

to foster wide-area applications with a middleware proposal that eases this development

process. Our intention is that this architecture be quite generic, use reusable code, and

provide easy access to commonly needed underlying services.

This approach cannot be based totally on a centralized solution, since these systems can

be overwhelmed and produce important bottlenecks when accessed simultaneously by

millions of clients. Naturally, such client-server approaches can be made more scalable

if supported by expensive load-balancing clustering systems. However, our aim is to

provide an infrastructure that is generic enough to achieve the same goal at a much

lower cost. Therefore, decentralizing and distributing the tasks that a heavyweight

centralized server would perform among n nodes has proven to be a low-cost efficient

solution [12, 15, 43].

Bearing in mind the requirements described in the section above and that the target

platform needs to be decentralized for the reasons described above, we identified three

minimal core requirements for achieving such an ambitious goal:

 The routing substrate, which serves as our whole system‘s communication core

layer, needs to be scalable, efficient and fault tolerant. This layer is responsible

for routing messages between network nodes in an efficient and fault tolerant

way. It is important that this routing substrate be as autonomous as possible so

that it can transparently handle node failures, arrivals, departures and other

exceptional events in the upper layers. Therefore, the routing substrate should

have the desirable features of self-organization, self-healing, flexibility, etc.

 An application-level multicast service is required to efficiently propagate

messages to many nodes at the same time. This multicast service must be

scalable and efficiently deliver messages to many clients, thus allowing one-to-

many communication. This approach is intuitively more efficient than sending n

notifications throughout the network. Moreover, as specified in the

requirements, this service can provide anycast primitives which enable messages

to be sent to any members. If this anycast service is network proximity aware,

we can even get messages delivered to the sender‘s closest members in terms of

network latency, for example. This service is crucial for our wide-area

middleware proposal, and we will describe it in greater detail in the next chapter.

 Any wide-area application will need to store its data somewhere. A persistence

service layer is obviously needed. If all application users (which could be

millions) tried to store or look up data from a centralized persistence service, the

bottleneck problem would arise again. Therefore, a decentralized persistence

layer is needed if applications are to be able to store data in a highly available

service, which allows for fault tolerance, efficiency and scalability concerns.

40 CHAPTER 2. OVERVIEW AND BACKGROUND

These three building blocks are the basic elements that a wide-area generic model

should provide the upper levels. Nevertheless, it is impractical to build new applications

on top of this bare core. We need to go one step further in terms of abstraction. This is

why we have built remote object (Dermi) and component-based (p2pCM) additional

tiers which allow easier access to these common services than the application

programmer does. Figure 2.1 shows the complete picture of our overall proposal.

Figure 2.1. Proposed Generic Wide-Area Middleware Model Architecture

Having described our proposed model‘s core architecture, we will now go on to

describe the background to the three main layers of which it consists. We shall start by

analyzing the wide-area routing substrate alternatives that are available, move on to

describe suitable application-level multicast services and finally focus on globally

scalable, efficient persistence solutions.

Message Routing Substrate Layer

Persistence Service
Layer

Application-Level Multicast
Layer

Wide-Area Remote Object Layer

Wide-Area Distributed Component Layer

Wide-Area
Middleware

Layer

2.3 BACKGROUND 41

2.3 Background

2.3.1 Peer-to-Peer Wide-Area Routing Substrates

Any communication substrate which is intended to be used for wide-area routing needs

to be able to route messages between network nodes in an efficient and fault tolerant

way. It is important that this routing substrate be as autonomous as possible so that it

can transparently handle node failures, arrivals, departures and other exceptional events

in the upper layers. Therefore, the routing substrate should have the desirable features of

self-organization, self-healing, flexibility, etc.

Nowadays, Internet applications tend to be organized in a relatively small number of

powerful servers which service many client nodes. In fact, this is the standard way in

which the World Wide Web (WWW) operates: a client-server architecture.

Nevertheless, although HyperText Transfer Protocol (HTTP) is such a lightweight

protocol, this model suffers from scalability problems. Once the application‘s hosting

server is overwhelmed with requests from many clients, it clearly becomes a bottleneck.

Moreover, if the server crashes, the application becomes unusable (unless redundant

clusters solve the problem). Therefore, the client-server architecture does not seem to be

suitable for low-cost wide-area fault tolerant massive application accessibility.

Many successful wide-area applications that support high numbers of concurrent

connected users have advocated the use of peer-to-peer (p2p) technologies to solve the

scalability problem. These applications use the decentralization paradigm to avoid

bottlenecks. Consequently, not only is there a single server that holds all the application

data, but also a bunch of nodes which work together to support the application. If a

service node goes down, another one can take its place and continue serving requests.

The same happens when trying to load balance requests: if there is more than one server

to serve these requests, the load can be balanced over all the available servers. This

approach taken to the extreme is the peer-to-peer philosophy, which has no clients or

servers: all nodes are treated as equal peers.

Another paradigm which follows this same decentralization line is Grid computing

[62]. The popularity of both Grid and p2p has led to a number of (often contradictory)

definitions. We assume that Grids are sharing environments implemented via the

deployment of a persistent, standards-based service infrastructure that supports the

creation of, and resource sharing within, distributed communities. Resources can be

computers, storage space, sensors, software applications and data, all connected

through the Internet and a middleware software layer that provides basic services for

security, monitoring, resource management, and so forth. Resources owned by

various administrative organizations are shared under locally defined policies that

specify what is shared, who is allowed to share, and under what conditions.

Peer-to-peer (p2p) is defined as a class of applications that takes advantage of the

resources —storage, cycles, content, human presence—at the edges of the Internet.

Because accessing these decentralized resources means operating in an environment of

unstable connectivity and unpredictable IP addresses, p2p design requirements

commonly include independence from Domain Name Systems (DNS) and significant

or total autonomy from central servers. Their implementations frequently involve the

42 CHAPTER 2. OVERVIEW AND BACKGROUND

creation of overlay networks [107, 111, 116] with a structure that is independent of that

of the underlying Internet. We prefer this definition to the alternative

decentralized, self-organizing distributed systems, in which all or most

communication is symmetric [97] because it encompasses large-scale deployed (albeit

centralized) ―p2p‖ systems (such as Napster [34] and SETI@home [41]) where much

experience has been gained.

Consequently, the general idea seems to split both the Grid and the p2p worlds into

those cases in which infrastructure is used to allow seamless access to supercomputers

and their datasets (Grids), and those which enable ad hoc communities of low-end

clients to advertise and access the files on communal computers (p2p).

To add more confusion, the concept of p2p Grids has also been devised [62]. A p2p

Grid contains a set of services that includes those of Grids and p2p networks and

naturally supports environments that have features of both limiting cases. In p2p Grid

architectures, Web services play a very important role. There is also an event service

which links these Web services and other resources together. In p2p Grids, everything is

a resource, and they are exposed directly to users and to other services.

After this introduction, we go on to analyze the evolution and state of the art in p2p

network routing substrates. We chose this kind of substrate because Grids do not

gracefully support highly dynamic environments where nodes join and leave frequently,

as one of our requirements states. Moreover, Grids do not typically focus on using the

resources of the edges of the Internet,: rather they focus on large-scale computing

applications.

As defined in [94], the term ―peer-to-peer‖ refers to a class of systems and applications

that employ distributed resources to perform a critical function in a decentralized

manner. The resources encompass computing power, data (storage and content),

network bandwidth, and presence (computers, human, and other resources). The

critical function can be distributed computing, data/content sharing, communication

and collaboration, or platform services. Decentralization may apply to algorithms,

data, and meta-data, or to all of them. This does not preclude retaining centralization in

some parts of the systems and applications if it meets their requirements.

Peer-to-peer architecture embodies one of the key technical concepts of the Internet,

described in the first Internet Request for Comments, RFC 1, Host Software [49] dated

7 April 1969. More recently, the concept has achieved recognition from the general

public because of the absence of central indexing servers in architectures used for

exchanging multimedia files. In this context, p2p computing has deployed a vast

number of applications mainly oriented to people communication and collaboration, as

well as distributed computing. One of their main features is high availability, thanks to

the multiple peers that make up a group of interest. This characteristic aims to guarantee

that almost any of the group members can satisfy any user‘s request.

This philosophy remains in stark contrast to that of traditional computing models, where

high availability is the result of complex load balancing mechanisms. Examples of

popular peer-to-peer applications include Napster [34], SETI@home [41], KaZaA

[42], eMule [15], or the most recent BitTorrent [12], or BOINC [11], to name a few.

However, the high availability of these networks is not the panacea, since it can be

http://en.wikipedia.org/wiki/RFC_1
http://en.wikipedia.org/wiki/April_7
http://en.wikipedia.org/wiki/1969
http://en.wikipedia.org/wiki/Server_%28computing%29

2.3 BACKGROUND 43

easily compromised: there is no guarantee that peers will behave correctly, or that they

will contribute resources to the community. The so-called tragedy of the commons

phenomenon often occurs, where only a few peers contribute to the network, and others

(often called leechers) try to take everything out without putting anything in. This

particular issue is explained in [97] - … nobody has to think of being nice to the next

guy or put in even a tiny bit of extra effort. We've heard plenty about the tragedy of the

commons. In the 1968 essay that popularized the concept, "The Tragedy of the

Commons," Garrett Hardin wrote: "Therein is the tragedy. Each man is locked into a

system that compels him to increase his herd without limit - in a world that is limited.

Ruin is the destination toward which all men rush, each pursuing his own best interest

in a society that believes in the freedom of the commons. Freedom in a commons brings

ruin to all.".

Peer-to-peer architectures tend to be non-reliable. This non-reliability comes from the

fact that there can be constant joins and leaves, and that resources have to be relocated

on the fly. The wide diversity of node capacities, operating systems and system

architectures which conform the network give p2p this heterogeneity factor. In order to

support these particular features, p2p networks must be self organizing and self

repairing, as well as fault tolerant. Their typical objective is for all nodes to make good

use of the shared distributed resources (i.e. CPU time, bandwidth, storage capacity,

etc.).

Figure 2.2. Peer-to-Peer network architecture

Peer-to-peer networks can be classified in a wide variety of ways. However, we are

interested in classifying the various p2p architectures to date by the algorithms they use

when trying to locate resources. One of the principal challenges of such systems is how

to locate a particular resource. Since this can be a highly complex problem, several

approaches have been taken to overcome it. In chronological order, these are the central

index location scheme, the unstructured location scheme (mainly based on

unstructured p2p networks) and the distributed hash table scheme (based on structured

p2p networks).

 Internet

44 CHAPTER 2. OVERVIEW AND BACKGROUND

2.3.1.1 The First Generation: Central Index Location Scheme

The first attempt to locate all resources in a p2p network was made by Napster [34]:,

the central index location scheme. Napster is an online music service which was

originally a file sharing service created by Shawn Fanning. Napster was the first widely-

used p2p music sharing service, and it had a major impact on how people, especially

university students, used the Internet. Its technology allowed music fans to easily share

MPEG-1 Layer 3 (MP3) format song files with each other, thus leading to the music

industry's accusations of massive copyright violations. Although the original service

was shut down by court order, it paved the way for decentralized p2p file-sharing

programs such as Kazaa [42], Limewire [31], and Bearshare [10], which have been

much harder to control. Napster continues to live on with pay services today. However,

the popularity of the first Napster has made it a legendary icon in the computer and

entertainment fields

Napster‘s architecture consisted of a central index server where all users logged in and

uploaded metadata about which resources they were sharing. Content searches were

made on the index server, and resource transfers were made between peers themselves.

More specifically, the central directory server maintained a metadata index of all the

files shared in the network. These metadata include file names, creation dates, file sizes,

and copyright information. The server also maintained a table of user connection

information including the user‘s IP address and line speed. First, a file query was sent to

the server. A query consisted of a list of desired words. When the server received a

query, it searched for matches in its index. The query results, including a list of users

who held the file, were sent back to the user who initiated the query. The user then

opened a direct connection with the peer who had the requested file for downloading.

This process can be seen in Figure 2.3.

http://en.wikipedia.org/wiki/File_sharing
http://en.wikipedia.org/wiki/Shawn_Fanning
http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/University
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Copyright_violation
http://en.wikipedia.org/wiki/P2P
http://en.wikipedia.org/wiki/Kazaa
http://en.wikipedia.org/wiki/Limewire
http://en.wikipedia.org/wiki/Bearshare

2.3 BACKGROUND 45

Figure 2.3. Napster's Architecture

This early Napster model had some problems, not all of which were related to the

central index location scheme:

 Peer inaccessibility: not all peers were accessible because of such factors as

firewalls, clients coming and going (the so-called churn), excessive round trip

times, slow upload speeds due to the asymmetric nature of ADSL connections,

etc.

 Focalized attacks: denial of service issues were relatively easy to perform, since

it they involved attacking core index servers. Moreover, clients could lie about

their shared content (eg: serve Frank Sinatra in response to download Eminem).

Another form of attack was hacking the Napster client programs, in order to run

the protocol in various disruptive ways. The discographic industry also tried to

figure out who was serving files so that they could be sued.

These problems made Napster evolve to a more robust solution, thus providing

enhanced directory servers which probed clients, tracking their health. It automatically

reported download problems to trim bad sources from the list. Incentives were also

provided: data sources were ranked so that clients who had been up for a long time,

seemed to have fast connections and appeared to be close to the client doing the

download (using the notion of locality in terms of Internet distance) had preference.

Your Computer

Napster Central Index Server

Napster Client

Napster Client

Napster Client

Napster Client
Napster Client

File transfer

Song request

46 CHAPTER 2. OVERVIEW AND BACKGROUND

Finally, they implemented a parallel downloading mechanism in an attempt to leverage

asymmetric download/upload speeds.

Nevertheless, one of fundamental problems of this centralized approach was clearly

scalability, since the central index server became a bottleneck for the whole network. It

quickly became overwhelmed with a vast number of user queries (logins, logouts,

searches, etc.). Moreover, this approach was not considered to be a pure peer-to-peer

solution, since content indexing was centralized. This centralization issue also made it

easier for organizations like the Recording Industry Association of America (RIAA) to

close down some of these networks (Napster [34], AudioGalaxy [9], etc.) which

illegally exchanged copyrighted audio and video. Since the whole system relied upon

these indexes, it was only a matter of time before they were located and closed down,

thus leading these applications to a predictable demise.

2.3.1.2 The Second Generation: Unstructured Peer-to-Peer Networks

In order to palliate all the above mentioned problems, the next solution to the problem

of efficiently locating resources in a peer-to-peer network adopted a pure decentralized

unstructured p2p network architecture. In these systems, peers have the same capability

and responsibility. Communication between peers is symmetric: there is no central

directory index server where the files‘ metadata is stored. This metadata is stored locally

among all peers. Examples of such systems include Gnutella [21], Freenet [18], or

MojoNation [33]. A wide variety of techniques for resource location were spawn in this

period in time. Some of the most popular are:

 Flooding: The query is sent to the node‘s neighbours, and spread from

neighbour to neighbour through a maximum number of hops. This technique is

explained in greater detail below.

 Epidemic algorithms [83]: Epidemic algorithms follow the paradigm of nature

by applying simple rules to spread information by just having a local view of the

environment. These algorithms are easy to implement and guarantee message

propagation in heterogeneous environments that are not always coherent.

Each epidemic algorithm contains a population consisting of a set of interactive,

communicating units. These units use a ruleset that defines how to spread

specific information that might be of interest to other units.

This ruleset is considerably affected by the design of the algorithm and can be

freely chosen. The only requirement is that at a specific time t a unit must have

one of the following states regarding specific information:

 Susceptible: the unit does not know anything about the specific

information but it can get it.

 Infective: the unit knows the specific information and uses the ruleset to

spread it.

 Removed (Recovered): the unit knows the specific information but does

not spread it.

2.3 BACKGROUND 47

 Random Walk [91]: Random walk is a well-known technique which forwards a

query message to a randomly chosen neighbor at each step until the object is

found. This message is called a walker. When standard random walk is used

(with one walker), it reduces message overhead significantly, by an order of

magnitude compared to flooding across the network topologies.

However, this efficiency increases user-perceived delay in successful searches

by an order of magnitude. To decrease the delay, the number of walkers is

increased. That is, instead of just sending out one query message, a requesting

node sends k query messages, and each query message takes its own random

walk. The expectation is that k walkers after T steps should reach roughly the

same number of nodes as one walker after kT steps.

Perhaps one of the best known of these unstructured systems is the Gnutella file

sharing protocol [21]. In Gnutella, clients (downloaders) are servers as well (called

servents), and they may join or leave the network at any time, making Gnutella highly

fault tolerant. But there is a cost: information is slowly discovered. Searches are done

within the virtual network while actual downloads are done offline (through HTTP).

The core of the protocol consists of 5 descriptors (PING, PONG, QUERY, QUERYHIT

and PUSH).

The strategy adopted in Gnutella was to utilize the flooding algorithm. It consisted of a

network of unstructured, anarchically connected nodes, which did not depend upon a

centralized index server when joining, leaving or searching content. Throughout all of

this anarchy, the search mechanism worked quite well. The idea was that if a node

wished to start a search, it issued a search message to all of its connected neighbours

looking for a resource. When a neighbor received the message it looked to see if it could

satisfy the query (i.e. whether the resource was found locally). If it could, then it routed

a message back to the sender saying that it had been found there. If it could not, the

message was routed on to the neighbour‘s connected nodes and so on. This process was

repeated until the message had traveled a maximum number of hops (time-to-live (TTL)

parameter), and it was then considered to have expired. This mechanism prevented the

network from being overwhelmed with a bunch of messages, and avoided a general

broadcast for each request, which would result in rapid degradation of the network‘s

performance.

48 CHAPTER 2. OVERVIEW AND BACKGROUND

Figure 2.4. Unstructured Topology of a Gnutella Network

A snapshot from a local Gnutella peer network in any neighbourhood using the mapping functions of the

Gnucleus [20] client.

Gnutella‘s Breadth First Search (BFS) algorithm always finds the optimal path, and the

performance is the same under random and target failure. However, the search

bandwidth used by queries proportionally increases with the number of network nodes.

Therefore, the Gnutella communication overhead is relatively high [56], resulting in

approximately 63% of messages being of type PING/PONG, and 37%

QUERY/QUERYHIT. Moreover, the problem of free riding is definitely an important

issue, meaning that 70% of Gnutella users share no files, and nearly 50% of all

responses were returned by the top 1% of sharing hosts.

Despite these issues, the Gnutella protocol works quite well in terms of returned results

and network scalability. However, it is not deterministic in the way resources are found.

The problem is that if a resource is too far away from the requester, it is not found in the

default number of search message hops. Therefore, it is reported that the resource does

not exist, whereas it does. As a consequence, with the flooding mechanism, resource

location is highly probable but not guaranteed, since if r of N nodes have a copy of the

resource, the expected search cost is at least N/r, i.e. O(N): if the number of copies (r)

increases, the probability of finding the resource also improves. Keeping many copies

of any resource is needed to keep overhead small.

2.3 BACKGROUND 49

Figure 2.5. Resource location via flooding on an Unstructured Peer-to-Peer Network

A node asks its neighbours for a document, and they keep propagating the request to their respective

neighbours (up to a maximum number of hops). Once the document has been found, the hosting nodes

answer directly to the request initiator.

Within the second generation of peer-to-peer location architectures we can also find

some hybrid approaches, which use some nodes as super-peers which act as central

indexes for their children nodes. These solutions are called partial centralized indexing

systems, and they use a central server which registers users to the system and facilitates

the peer discovery process. After a peer authenticates on the server, the server provides

it with the IP address and port of one or more super-peers (or supernodes) to which the

peer then connects. Local super-peers index the files shared by their connected peers

and proxy search requests on behalf of these peers. Therefore, these nodes act as query

redirectors to other super-peers and help locate content among them. Searches within

children nodes are made using flooding or random walking techniques. Examples of

such systems include KaZaA [42], Morpheus [45] or the eDonkey network [15], and

even Skype [43].

In the case of the Morpheus [45] file sharing system, peers are automatically elected to

become supernodes if they have sufficient bandwidth and processing power (a

configuration parameter allows users to opt out of running their peer in this mode).

Once a Morpheus peer receives its list of supernodes from the central server, little

communication with the server is required.

2.3.1.2.1 JxTA

Since we are analyzing state of the art in wide-area routing substrates, and since we are

describing unstructured p2p networks, we must talk about JxTA, which is precisely an

unstructured p2p routing substrate.

Who has
this

document? I have it

I have it

50 CHAPTER 2. OVERVIEW AND BACKGROUND

JxTA [39] is an open source peer-to-peer platform created by Sun Microsystems in

2001. It is defined as a set of eXtensible Markup Language (XML) based protocols that

allow any device connected to a network to exchange messages and collaborate

whatever the network topology. JxTA is one of the most mature p2p frameworks

currently available and was designed to allow a wide range of devices - PCs,

mainframes, cell phones, PDAs - to communicate in a decentralized manner.

JxTA defines two main categories of peers: edge peers and super-peers. Super-peers

can be further divided into rendezvous peers and relay peers. Each peer has a well

defined role in the JxTA peer-to-peer model. Edge peers are usually defined as peers

that have transient, low bandwidth network connectivity. They usually reside on the

edges of the Internet, hidden behind corporate firewalls or accessing the network

through non-dedicated connections. A rendezvous peer is a special purpose peer that is

in charge of coordinating the peers in the JxTA network and provides the necessary

scope to message propagation. A relay peer allows the peers that are behind firewalls or

NAT systems to take part in the JxTA network. This is done by using a protocol that

can traverse firewalls (for example, HTTP).

The components that make up a JxTA system are exactly the same as those that can be

identified in many p2p network implementations, and include peers and peer groups,

services, pipes, messages, and advertisements.

The logical partitioning of the physical network creates working sets of peers called

peer groups. Peer group memberships can overlap with no restriction; in other words,

any peer can belong to as many peer groups as necessary. The JxTA specification does

not dictate or recommend an appropriate way of forming peer groups. In a JxTA

network, a peer group is a collection of peers that share resources and services.

Consistent with JxTA's design philosophy, a peer group is specified to be as

unconstrained and as generic as possible.The existence of these peer groups mandates

some means of maintaining membership. Again, the JxTA specification states only the

minimal need for maintaining group membership, without dictating how this should be

done. This membership service is a part of the core JxTA services, but it can take many

forms – it can be either a database or directory service, for instance, and based on either

a centralized or a distributed implementation.

JxTA services are available for shared use by peers within a peer group. In fact, a peer may join a

group primarily to use the services available within that group. A set of services, called core

services, is essential to the basic operation of a JxTA network. We have already seen one instance of

a core service: the membership service.

Table 2.1 shows the core services included in version 1.0 of the JxTA specification.

2.3 BACKGROUND 51

Service name Description

Pipe The main means of communications between peers; provides an abstraction for a one-
way, asynchronous conduit for information transfer.

Membership Determines which peers belong to a peer group; handles arrival and departure of peers
within a peer group.

Access Security service for controlling access to services and resources within a peer group; a
sort of security manager for the peer group.

Discovery A way peers can discover each other, the existence of other peer groups, pipes,
services, and the like.

Resolver Allows peers to refer to each other, peer groups, pipes, or services indirectly through a
reference (called an advertisement); the resolver binds the reference to an
implementation at run time.

Table 2.1. Services present in JxTA

One way to transfer data, files, information, code, or multimedia content between peers

is through logical pipes, as defined by the JxTA specification. JxTA pipes are used to

send messages (with arbitrary content) between peers.

A pipe instance is, logically speaking, a resource within a peer group. It is typically

implemented through the pipe service. Unlike conventional (UNIX-like) systems, JxTA

pipes are unidirectional and asynchronous. Two peers requiring two-way

communications will have to create two independent pipe instances.

The blocks of information carried though pipes are referred to as JxTA messages. JxTA

messages are data bundles that are passed from one peer to another through pipes. The

JxTA specification is again as generic as possible here, so as not to inadvertently

introduce any implementation-dependent policies into the definition of a message. A

message is defined as an arbitrarily sized bundle, consisting of an envelope and a body.

To provide for a standard, easy-to-parse, universal encoding mechanism, JxTA

messages are currently XML documents.

Advertisements are the less obvious cousins of messages. JxTA advertisements are

also XML documents. The content of an advertisement describes the properties of a

JxTA component instance, such as a peer, a peer group, a pipe, or a service. For

example, a peer with access to an advertisement of another peer can try to connect

directly to that other peer. A peer with access to an advertisement of a peer group can

use the advertisement to join that group. The current Internet analogue to an

advertisement is the domain name and DNS record of a Web site. The JxTA

specification does not dictate how advertisements are created, circulated, or destroyed.

Because of the nondeterministic nature of the JxTA world, a specific resource request

may not return for minutes, hours, or even days; in fact, it may never return at all. In

addition, people from different parts of the world requesting the same resource are

likely to get different copies of the resource from completely different servers. In an

attempt to palliate the first problem, a recent implementation of a Distributed Hash

Table on top of JxTA is currently being researched: GISP [19].

52 CHAPTER 2. OVERVIEW AND BACKGROUND

2.3.1.3 The Third Generation: Structured Peer-to-Peer Networks

The next generation of p2p networks tries to solve the non-determinism problem of

resource location. The idea is that if a specific resource is on the network, it should be

found. To find it, the philosophy changes, and these networks start becoming structured

node groupings. Nodes are arranged in a structured fashion, typically following tree or

ring formations. The objective is to assign particular nodes to store particular content.

When a node wishes to look for a resource, it must be redirected to the node which is

supposed to hold it.

The challenges of these structured peer-to-peer networks are:

 to avoid bottlenecks in particular nodes, thus distributing responsibilities evenly

among the existing peers.

 to adapt to nodes joining or leaving (or failing). As a consequence, it is logical to

give new responsibilities to joining nodes, and redistribute responsibilities from

leaving nodes.

These challenges perfectly match the idea of a hash table, in which each data item is

associated with a key. The key is hashed to find its corresponding bucket in the hash

table. Each bucket is expected to hold #items/#buckets items. In order to map this data

structure to our problem, it is considered that nodes are the buckets in our global

Distributed Hash Table (DHT). Therefore, the key is hashed to find the resource‘s

responsible peer node, obtaining data and load balancing across nodes.

As a consequence, we can define Distributed Hash Tables as a class of decentralized

distributed systems that partition ownership of a set of keys among participating nodes,

and can efficiently route messages to the unique owner of any given key. Each node is

analogous to a bucket in a hash table. DHTs are typically designed to scale to large

numbers of nodes and to handle continual node arrivals and failures. This infrastructure

can be used to build more complex services, such as distributed file systems, p2p file

sharing systems, cooperative web caching, multicast, anycast, and domain name

services.

Even though this approach seems to solve the problems caused by both central index

and unstructured p2p network schemes, it also raises several issues that must be taken

care of:

2.3 BACKGROUND 53

Figure 2.6. Distributed Hash Table abstraction

In a normal hash table, hash buckets are stored in local memory. However, in a DHT, hash buckets

correspond to network physical nodes, and (key,value) pairs are stored on them.

 Dinamicity: if we use a hash function modulus N (where N is the approximate

number of nodes in the network), virtually every key will change its location

whenever a node is added or removed, since its hash function will return

different results according to this formula:

h(k) mod m ≠ h(k) mod (m+1) ≠ h(k) mod (m-1)

In order to solve this problem, a method called consistent hashing [86], adopted

by the Chord [111] routing algorithm, is currently used by the major DHT

designers. Consistent hashing implies defining a fixed hash space in which all

hash values fall, and they do not depend on the number of peers. As a

consequence, each key falls into the peer closest to its ID in the hash space,

according to some proximity metric. This concept is described in greater detail

when the Chord routing algorithm is explained in Section 2.3.1.3.2.

 Size: do we need a connection to each node in the network? This approach

works well with small, static server populations. Nevertheless, when talking

about wide-scale p2p networks, it is impossible to assume that every single node

can be connected to all others, since the maintenance overhead would kill the

entire network. The only possible solution is to allow each peer to know only a

few neighbours. Messages are therefore routed through neighbours via multiple

hops, using an overlay routing scheme.

In an efficient DHT, hosts are configured into a structured network so that mapping

table lookups require a small number of hops. Designing a practical scheme along these

lines is challenging because of the following desiderata:

 Scalability: the protocol should work for a range of networks of arbitrary size.

pos = 2

lookup (key

)
→ data

insert (key, data)
lookup lookup (key) → data
insert (key, data)

hash bucket

lookup (key

)
→ data

insert (key, data)
lookup (key) → data

insert (key, data) 0 0
1 1
2 2

N - 1 N - 1

3 3

x x

y y z z

0 0
1 1
2 2

N - 1 N - 1

3 3

...

x x

y y z z

0

1

2

...

node

→
lookup (key) → data

insert (key, data)

N - 1 -

hash function

key = ‘star_trek’ → h(key)%N

hash function pos = 2

key = ‘star_trek’ → h(key)%N

Distributed Hash Table Hash Table

54 CHAPTER 2. OVERVIEW AND BACKGROUND

 Stability: the protocol should work for hosts with arbitrary arrival and departure

times, typically with small lifetimes. This means that nodes joining and leaving

should be gracefully handled, which implies repartitioning the affected keys

over existing nodes, reorganizing the neighbour sets, and providing bootstrap

mechanisms to connect new nodes into the DHT.

 Performance: the protocol should provide low latency for hash lookups and low

maintenance cost in the presence of frequent joins and leaves.

 Small diameter: a consequence of the previous property. The node(s)

responsible for each object should be reachable via a short path. In fact, the

existing DHT models fundamentally differ only in the routing approach.

 Flexibility: the protocol should impose few restrictions on the remainder of the

system. It should allow for smooth trade-offs between performance and state

management complexity.

 Small degree: a consequence of the flexibility property. There should be a

reasonable number of neighbours for each node.

 Decentralized routing: DHT routing mechanisms should be decentralized, thus

avoiding any single point of failure or bottleneck.

 Low stretch: necessary if our DHT wishes to perform well, minimizing the ratio

of DHT routing versus unicast latency.

 Simplicity: the protocol should be easy to understand, code, debug and deploy.

The DHT abstraction provides a minimal access interface, which is mainly data-centric.

It naturally supports a wide range of applications, because it imposes very few

restrictions: keys have no semantic meaning, and values are application dependent.

Therefore, DHTs can be used as a decentralized data insertion and location facility. It is

important to note that DHTs are not meant for storing data: they provide the means to

insert it and locate it in a decentralized fashion. However, data storage logic can be built

on top of the DHTs, by using its principal programming interface: put (key, data) and

get (key) → data.

Many systems have adopted this scheme, starting with CAN [103] and Chord [111],

which were the first to appear, followed by Tapestry [116], Pastry [107], Kademlia [93],

Symphony [92] and Bamboo [104]. This kind of structured peer-to-peer overlay

networks are often called Key Based Routing (KBR) substrates, since message routing

depends upon node identifiers.

In order to point out the significance of structured p2p overlay network benefits, Table

2.2 shows a comparative study of the advantages and disadvantages of the existing p2p

network approaches described throughout this section.

2.3 BACKGROUND 55

 Centralized Decentralized

Unstructured
Partially Centralized Decentralized

Structured

Advantages Resources are
deterministically
located quickly and
efficiently

Searches are as
comprehensive as
possible

All users are
registered on the
network

Scales very well

Bottlenecks are
removed

Fault tolerant

Scales better than the
centralized approach

Reduces discovery
time in comparison with
purely decentralized
unstructured indexing
systems

Reduces the workload
on central servers in
comparison with fully
centralized indexing
systems

Scales very well

Searches are
deterministic and
results are found
in a number of
bounded hops

Fault tolerant,
self-organizing,
self-healing

State information
per node is
bounded

Disadvantages Vulnerable to
censorship and
technical failure

Popular data
become less
accessible because
of the load of the
requests on the
central server

Central index may
be out of data
because the central
server’s database
is only refreshed
periodically

Has scalability
problems

Slow information
discovery

More query traffic
on the network

Searches are
probabilistic

Supernodes can be
surgically attacked
making the network
unusable

Scales worse than pure
decentralized
approaches

Churn must be
properly handled
to prevent data
loss

Table 2.2. Comparison of different p2p resource-location architectures

The relatively new structured p2p protocols that have emerged in recent years seem to

provide a solid enough base for supporting many p2p future developments. This is the

reason why we consider structured peer-to-peer key-based routing substrates to be a

very interesting alternative for being the basis for our proposed generic model. These

substrates provide such neat features as self-organization, self-healing, fault tolerance,

efficient message routing, and many others, thus fulfilling some of the requirements we

had in mind: scalability, dynamicity, fault tolerance, etc Table 2.3 compares the various

KBR protocols and their main features and performance. These protocols are described

in the following sections.

56 CHAPTER 2. OVERVIEW AND BACKGROUND

 # Neighbours Worst Case Routing

Latency
Proximity-aware Implementation

CAN O(d) O(dn1/d) Yes None known

Chord O(log2 n) O(log2 n) N/A in the original
design. Proximity-aware

Chord is described in
[71]

C/C++, not
official yet

Pastry O((2blog2 n)/b) O((log2 n)/b) Yes Java/.NET

Tapestry O((2blog2 n)/b) O((log2 n)/b) Yes Java/C++

Bamboo O((2blog2 n)/b) O((log2 n)/b) Yes Java

Symphony O(2k) O((log2 n)/k) No None known

Table 2.3. Comparison of various structured overlay protocols

d refers to the # dimensions, n to the # nodes, b to the # digit bits, and k to the # long links.

2.3.1.3.1 CAN

Content Addressable Network (CAN) [103] is a distributed hash table structured

throughout a virtual d-dimensional Cartesian coordinate space on a d-torus. This

coordinate space is completely logical and bears no relation to any physical coordinate

system. At any point in time, the entire coordinate space is dynamically partitioned

among all the nodes in the system such that every node ―owns‖ its individual, distinct

zone within the overall space.

This virtual coordinate space is used to store key,value pairs as follows: to store a pair

(K1,V1), key K1 is deterministically mapped onto a point P in the coordinate space using

a uniform hash function. The corresponding key,value pair is then stored at the node that

owns the zone within which point P lies. To retrieve an entry corresponding to key K1,

any node can apply the same deterministic hash function to map K1 onto point P and

then retrieve the corresponding value from it. If point P is not owned by the requesting

node or its immediate neighbors, the request must be routed through the CAN

infrastructure until it reaches the node in whose zone P lies. Efficient routing is

therefore a critical aspect of a CAN.

Nodes in the CAN self-organize into an overlay network that represents this virtual

coordinate space. A node learns and maintains the IP addresses of those nodes that hold

coordinate zones adjoining its own zone. This set of immediate neighbors in the

coordinate space serves as a coordinate routing table that enables routing between

arbitrary points in this space.

Intuitively, routing in a Content Addressable Network works by following the straight

line path through the Cartesian space from source to destination coordinates. A CAN

node maintains a coordinate routing table that holds the IP address and virtual

coordinate zone of each of its immediate neighbors in the coordinate space. In a d-

dimensional coordinate space, two nodes are neighbors if their coordinate spans overlap

along d-1 dimensions and abut along one dimension. This purely local neighbour state

is sufficient to route between two arbitrary points in the space: a CAN message includes

the destination coordinates. Using its neighbour coordinate set, a node routes a message

towards its destination by simple greedy forwarding to the neighbour with coordinates

closest to the destination coordinates. For a d-dimensional space partitioned into n equal

2.3 BACKGROUND 57

zones, the average routing path length is (d/4)(n
1/d

) hops and individual nodes maintain

2d neighbours. These scaling results mean that for a d-dimensional space, we can

increase the number of nodes (and hence zones) without increasing per node state while

the average path length grows as O(n
1/d

).

Figure 2.7. CAN Lookup Example

There are numerous path choices, so messages can be routed around failures.

Note that there are many different paths between two points in the space so, even if one

or more of a node‘s neighbours were to crash, a node can automatically route along the

next best available path.

CAN was the first distributed hash table to appear, and it was quickly overcome by

other algorithms which were more efficient and required less neighbourhood state

maintenance per node.

2.3.1.3.2 Chord

Chord [111] is another distributed hash table approach, contemporary to CAN. The

Chord protocol specifies how to find the locations of keys, how new nodes join the

system, and how to recover from the failure (or planned departure) of existing nodes. At

its heart, Chord provides fast distributed computation of a hash function, and mapping

keys to nodes responsible for them. It uses consistent hashing [86] to assign key, value

pairs to their hash buckets, which are physical nodes.

With high probability the hash function balances the load (all nodes receive roughly the

same number of keys). Also with high probability, when an N
th

 node joins (or leaves)

the network, only an O(1/N) fraction of the keys are moved to a different location: this

is clearly the minimum requirement for maintaining a balanced load. Chord improves

the scalability of consistent hashing by avoiding the requirement that every node knows

about every other node. A Chord node needs only a small amount of routing

information about other nodes. Because this information is distributed, a node resolves

the hash function by communicating with a few other nodes. In an N-node network,

each node maintains information only about O(log N) other nodes, and a lookup

W

N

A

S

E

B

d=2d=2

58 CHAPTER 2. OVERVIEW AND BACKGROUND

requires O(log N) messages. Chord must update the routing information when a node

joins or leaves the network; a join or leave requires O(log
2
 N) messages.

The consistent hash function uses a base hash function such as Secure Hash Algorithm

1 (SHA-1) to assign each node and key an m-bit identifier. A node‘s identifier is chosen

by hashing the node‘s IP address, while a key identifier is produced by hashing the key.

The identifier m must be long enough to make the probability of two nodes or keys

hashing to the same identifier negligible.

Consistent hashing assigns keys to nodes as follows. Identifiers are ordered in an

identifier circle modulo 2
m
. Key k is assigned to the first node whose identifier is equal

to or follows (the identifier of) k in the identifier space. This node is called the

successor node of key k, denoted by successor(k). If identifiers are represented as a

circle of numbers from 0 to 2
m
 - 1, then successor(k) is the first node clockwise from k.

Consistent hashing is designed to let nodes enter and leave the network with minimal

disruption. To maintain the consistent hashing mapping when a node n joins the

network, some keys that were previously assigned to n‘s successor are now assigned to

n. When node n leaves the network, all of its assigned keys are reassigned to n‘s

successor. No other changes in the assignment of keys to nodes need occur.

Each node stores information about only a small subset of the nodes in the system. in its

routing table, called a finger table. The search for a node moves progressively closer to

identifying the successor with each step. A search for the successor of f initiated at node

r begins by determining if f is between r and the immediate successor of r. If so, the

search terminates and the successor of r is returned. Otherwise, r forwards the search

request to the largest node in its finger table that precedes f; call this node s. The same

procedure is repeated by s until the search terminates.

Chord includes a simple stabilization protocol which allows it to be fault resilient, self-

organizing and self-healing, and to perform acceptably even in the face of concurrent

node arrivals and departures. Nevertheless, this simplicity is also one of the protocol‘s

biggest problems, since it involves too much communication between nodes.

The authors of Chord proposed an extension to support network proximity for lower

latency and higher throughput [71].

Although Chord has not been officially released, an experimental version is available

for download on its website. Chord is the basis for the Cooperative File System (CFS)

[70], a wide-area peer-to-peer storage system.

2.3 BACKGROUND 59

Figure 2.8. A Chord ring consisting of many nodes

Notice how the finger table is organized and how K54 is looked up following Chord‘s algorithm.

2.3.1.3.3 Pastry

Pastry [107] is a structured peer-to-peer network routing substrate which improved

some of the limitations of the Chord protocol. A Pastry system is defined as a self-

organizing overlay network of nodes, in which each node routes client requests and

interacts with local instances of one or more applications. Any computer that is

connected to the Internet and runs the Pastry node software can act as a Pastry node,

subject only to application-specific security policies.

Each node in the Pastry p2p overlay network is assigned a 128-bit node identifier

(nodeId). The nodeId is used to indicate a node‘s position in a circular nodeId space,

which ranges from 0 to 2
128

 – 1. The nodeId is assigned randomly when a node joins

the system. It is assumed that nodeIds are generated such that the resulting set of

nodeIds is uniformly distributed in the 128-bit nodeId space. For instance, nodeIds

could be generated by computing a cryptographic hash of the node‘s public key or its IP

address. As a result of this random assignment of nodeIds, with high probability, nodes

with adjacent nodeIds are diverse in geography, ownership, jurisdiction, network

attachment, etc.

Assuming a network consisting of N nodes, Pastry can route a given key to the

numerically closest node in less than log2bN steps under normal operation (b is a

configuration parameter with a typical value of 4). Despite concurrent node failures,

eventual delivery is guaranteed unless |L|/2 nodes with adjacent nodeIds fail

simultaneously (|L| is a configuration parameter with a typical value of 16 or 32).

Therefore, Pastry routes to any node in the overlay network in O(log N) steps in the

absence of recent node failures, and it maintains routing tables with O(log N) entries.

N1

N8

N14

N32

N21

N38

N42

N48

N51

N56

m=6m=6

K54

2m-1 0

N8+1

N8+2

N8+4

N8+8

N8+16

N8+32

N14

N14

N14

N21

N32

N42

Finger table

+32

+16 +8

+4

+2

+1

lookup(K54)

N1

N8

N14

N32

N21

N38

N42

N48

N51

N56

m=6m=6

K54

2m-1 0

N8+1

N8+2

N8+4

N8+8

N8+16

N8+32

N14

N14

N14

N21

N32

N42

Finger table

+32

+16 +8

+4

+2

+1

lookup(K54)lookup(K54)

60 CHAPTER 2. OVERVIEW AND BACKGROUND

For the purpose of routing, nodeIds and keys are thought of as a sequence of digits with

base 2
b
. Pastry routes messages to the node whose nodeId is numerically closest to the

given key. This is done in the following way. In each routing step, a node normally

forwards the message to a node whose nodeId shares a prefix with the key that is at least

one digit (or b bits) longer than the prefix that the key shares with the present node‘s ID.

If no such node is known, the message is forwarded to a node whose nodeId shares a

prefix with the key as long as the current node, but is numerically closer to the key than

the present node‘s ID. To support this routing procedure, each node maintains a routing

table, a neighborhood set and a leaf set.

Figure 2.9. State of a hypothetical Pastry node

With nodeId 10233102, b = 2. All numbers are in base 4. The top row of the routing table is row zero.

The shaded cell in each row of the routing table shows the corresponding digit of the present node‘s

nodeId. The nodeIds in each entry have been split to show the common prefix with 10233102 - next digit -

rest of nodeId. The associated IP addresses are not shown.

The original version of Pastry was shipped with a minimal API which allowed

programming of several applications like PAST [73] and Scribe [66]. This API was in

the future extended to support the Common API for Structured Overlay Networks [72].

Pastry exports the following operations:

nodeId = pastryInit(Credentials, Application)

Causes the local node to join an existing Pastry network (or start a new one), initialize all

relevant states, and return the local node‘s nodeId. The application-specific credentials contain
information needed to authenticate the local node. The application argument is a handle to the

application object that provides the Pastry node with the procedures to invoke when certain

events happen (e.g. a message arrival).
route(msg,key)

Causes Pastry to route the given message to the node whose nodeId is numerically closest to the

key, of all the live Pastry nodes.

Node ID 10233102Node ID 10233102

Leaf setLeaf set

Routing TableRouting Table

Neighborhood setNeighborhood set

00

0221210202212102 11 2230120322301203 3120320331203203

1130123311301233 1223020312230203 1302102213021022

221003120310031203 1013210210132102 1032330210323302

33

33

10222302102223021020023010200230 1021130210211302

1023032210230322 1023100010231000 1023212110232121

1023300110233001

1023312010233120

102332321023323211

00

22

1302102213021022 1020023010200230 1130123311301233 3130123331301233

0221210202212102 2230120322301203 3120320331203203 3321332133213321

1023303310233033 1023302110233021 1023312010233120 1023312210233122

1023300110233001 1023300010233000 1023323010233230 1023323210233232

< SMALLER< SMALLER LARGER >LARGER >

Contains the

nodes that are

numerically

closest to

local node

MUST BE UP

TO DATE

b=2, so node ID

is base 4 (16 bits)

m
/b

ro
w

s

Contains the

nodes that are

closest to

local node

according to

proximity metric

2b-1 entries per row

Entries in the nth row

share the first n digits

with current node
[common-prefix next-digit rest]

nth digit of current node

Entries in the mth column

have m as next digit

Entries with no suitable

node ID are left empty

b=2b=2m=16m=16

2.3 BACKGROUND 61

Applications layered on top of Pastry must implement the following operations:

deliver(msg,key)

Called by Pastry when a message is received and the local node‘s nodeId is numerically closest

to the key of all the live nodes.
forward(msg,key,nextId)

Called by Pastry just before a message is forwarded to the node with nodeId = nextId. The

application may change the contents of the message or the value of nextId. Setting the nextId to
NULL terminates the message at the local node.

update(leafSet)

Called by Pastry whenever there is a change in the local node‘s leaf set. This provides the
application with an opportunity to adjust application-specific invariants based on the leaf set.

Table 2.4. Pastry's exposed API

One important feature about Pastry is its locality awareness. This feature guarantees

that the route chosen for a message is likely to be ―good‖ with respect to the proximity

metric. Pastry‘s notion of network proximity is based on a scalar proximity metric, such

as the number of IP routing hops or geographic distance. It is assumed that the

application provides a function that allows each Pastry node to determine the distance

of a node with a given IP address from itself. A node with a lower distance value is

assumed to be more desirable. An application is expected to implement this function

depending on its choice of proximity metric, using network services like traceroute or

Internet subnet maps, and appropriate caching and approximation techniques to

minimize overhead.

Figure 2.10. Pastry State and Lookup

For each prefix, a node knows some other node (if any) with the same prefix and different next digit.

When multiple nodes are available, the topologically-closest is chosen, thus maintaining good locality

properties.

N0002

N0201

N0322

N2001

N1113

N2120

N2222

N3001

N3033

N3200

m=8m=8

2m-1 0b=2b=2

N0122

N0212

N0221

N0233

Routing

table

K2120

lookup(K2120)lookup(K2120)

62 CHAPTER 2. OVERVIEW AND BACKGROUND

2.3.1.3.4 Tapestry

Tapestry [117] is another p2p overlay network scheme that provides a routing

architecture: a self-organizing, scalable, robust wide-area infrastructure that efficiently

routes requests to content, in the presence of heavy load, and network and node faults.

Tapestry has an explicit notion of locality, and provides location-independent routing of

messages directly to the closest copy of an object or service using only point-to-point

links and with no centralized services. Paradoxically, Tapestry uses randomness to

achieve both load distribution and routing locality. It has its roots in the Plaxton

distributed search technique [101], augmented with additional mechanisms to provide

availability, scalability, and adaptation in the presence of failures and attacks. The

routing and directory information within this infrastructure is purely soft state and easily

repaired. Tapestry is self administrating, fault-tolerant, and resilient under load.

Tapestry uses local routing maps at each node, called neighbour maps, to incrementally

route overlay messages to the destination ID digit by digit. A node N has a neighbour

map with multiple levels, in which each level represents a matching suffix up to a digit

position in the ID. By definition, the nth node a message reaches shares a suffix of at

least length n with the destination ID. To find the next router, we look at its n + 1th

level map, and look up the entry matching the value of the next digit in the destination

ID. Assuming consistent neighbour maps, this routing method guarantees that any

existing unique node in the system will be found within at most logbN logical hops, in a

system with an N size namespace using IDs of base b.

Figure 2.11. Tapestry routing example

Here we see the path taken by a message originating from node 38544 destined for node 68721 in a

Plaxton mesh [101] using hexadecimal digits of length 5.

...
67493

...
67493

38544

79731

58721

…

33421

47721

68721

xxxx1

xxx21 xx721

x8721

68721

...
67493

2.3 BACKGROUND 63

At present there is a Java implementation of Tapestry, and some interesting wide-area

services have been built on top of this substrate. These include application level

multicast services, like Bayeux [118], and the OceanStore Project [89], a global-scale

persistent storage system.

2.3.1.3.5 Bamboo

Bamboo [104] is a DHT that is specially designed to handle the problem of churn,

which is defined as the continuous process of node arrival and departure. Bamboo‘s

design allows it to function effectively at churn rates at or higher than those observed in

p2p file-sharing applications, while the maintenance bandwidth is lower than that of

other DHT implementations.

The geometry and routing of Bamboo‘s internal design are identical to Pastry‘s. The

difference lies in how Bamboo maintains the geometry as nodes join and leave the

network and the network conditions vary. Using this Pastry-based design, Bamboo

performs lookups in O(log N) hops, while the leaf set allows forward progress if the

routing table is incomplete.

Figure 2.12. Neighbours in Pastry and Bamboo

A node‘s neighbours are divided into its leaf set, shown as dashed arrows, and its routing table, shown as

solid arrows.

Bamboo‘s designers demonstrate that DHTs can handle high churn rates, and identify

and explore several factors that affect the behaviour of DHTs under churn. These factors

include how DHTs recover from failures, how message timeouts are calculated during

lookups, and how to choose nearby over distant neighbours.

0…

10…

110…

111…

64 CHAPTER 2. OVERVIEW AND BACKGROUND

Therefore, they analyze the use of a reactive recovery failure strategy, whereby a DHT

node tries to find a replacement neighbour as soon as it notices that an existing

neighbour has failed. This strategy is in stark contrast to proactive recovery, where a

node periodically shares its leaf set with every member of that set, each of which

responds in kind with its own leaf set. Proactive recovery is the mechanism Bamboo

currently uses.

The way in which message timeouts are calculated during lookups can also greatly

affect performance under churn. If a node performing a lookup sends a message to a

node that has left the network, it must eventually timeout the request and try another

neighbour. Such timeouts are a significant component of lookup latency under churn,

and they analyze several methods of computing good timeout values, including virtual

coordinate schemes as used in Chord.

Finally, Bamboo‘s designers consider proximity neighbour selection (PNS), where a

DHT node with a choice of neighbours tries to select those that are nearest to itself in

terms of network latency.

Bamboo can be configured to use any of the design choices that are appropriate for each

factor, and the authors analyze the impact of each design choice applied to churn. A

Java implementation of Bamboo is available and fully downloadable at

http://www.bamboo-dht.org.

2.3.1.3.6 Symphony

The Symphony KBR protocol [92] places all hosts on a ring and equips each node with

a few long distance links. Symphony is inspired by Kleinberg‘s Small World

construction [88]. Kleinberg‘s result is extended by showing that with k = O(1) links

per node, it is possible to route hash lookups with an average latency of

O

n

k

2log
1

hops. Among the advantages that Symphony has over existing DHT

protocols are the following:

 Low state maintenance: Symphony provides low average hash lookup latency

with fewer TCP connections per node than other protocols. Low degree

networks reduce the number of open connections and ambient traffic

corresponding to pings, keep-alives and control information. Moreover, sets of

nodes that participate in locking and coordination for distributing state update

are smaller sized.

 Fault tolerance: Symphony requires f additional links per node to tolerate the

failure of f nodes before a portion of the hash table is lost. Unlike other

protocols, Symphony does not maintain backup links for each long distance

contact.

 Degree vs Latency tradeoff: Symphony provides a smooth tradeoff between the

number of links per node and average lookup latency. It appears to be the only

protocol that provides this tuning knob even at run time. Symphony does not

http://www.bamboo-dht.org/

2.3 BACKGROUND 65

dictate that the number of links be identical for all nodes. Neither is the number

stipulated to be a function of current network size nor is it fixed at the outset.

These features of Symphony provide support for heterogeneous nodes,

incremental scalability, and flexibility.

Every node maintains 1k long distance links. For each such link, a node first draws a

random number Ix from a probability distribution function. Then it contacts the

manager of the point x away from itself in the clockwise direction by following

Symphony‘s routing protocol. Finally, it attempts to establish a link with the manager of

x. Symphony uses bidirectional routing as well to improve overall average latency.

The number of incoming links per node is bounded by placing an upper limit of 2k

incoming links per node. Once the limit is reached, all subsequent requests to establish a

link with this node are rejected. The requesting node then makes another attempt by re-

sampling from its probability distribution function. It is also ensured that a node does

not establish multiple links with another node.

66 CHAPTER 2. OVERVIEW AND BACKGROUND

2.3.2 Wide-Area Application-Level Multicast

The second layer of our proposed generic model facilitates efficient communication

from one node to multiple nodes. Applications often need to distribute or propagate

state changes to their different views. In a distributed application, these views are

usually remote clients which need to be updated whenever any changes occur due to the

application logic. Therefore, it is inefficient for the sender node to send n messages to

each of the associated clients. It is far more efficient to send one message which is

efficiently and transparently propagated to the application‘s subscribed clients.

When thinking about propagating messages from one node to many, we quickly think

about IP Multicasting [51]. IP Multicast is a method whereby a message can be sent

simultaneously to several computers, instead of to one single computer. In order to do

this, the message is sent to a range of addresses reserved for multicast groups

(224.x.x.x-239.x.x.x) - each computer must also decide whether or not it wishes to be

part of a specific group. (A computer can subscribe to the same group more than once -

in such a case, each subscribing application receives a separate copy of each message

received on the group IP address).

However, IP Multicasting is only supported by very few routers in the Internet.

Therefore, this alternative cannot be used as a wide-area multicasting solution. In order

to provide the same functionality as IP Multicasting, application-level multicast

solutions allow such multicasting features at the application level. This way, events and

messages are relayed from origin to destination by an application specific component,

called the event bus, and its implementation, the event system.

It is important to make clear at this point that we refer indistinctively to application-

level multicast and publish/subscribe event systems throughout this thesis. Formally,

both approaches differ in the fact that publish/subscribe event systems have features that

traditional application level multicast approaches do not (for example, durable

messaging, or event ordering). For our work, however, since very few wide-area

infrastructures of this kind exist, we group them into the same category.

Event systems have proven to be very useful middleware for distributed applications.

The event bus is responsible for transmitting to subscribers events thrown by producers

based on the information contained in these events.

There are many client-server and federation-based event systems which suffer from the

same scalability problems found in these architectural approaches. In this section we

analyze and compare state of the art in existing wide-area application-level multicast

solutions.

2.3 BACKGROUND 67

2.3.2.1 Reference Model

We propose a reference model in which we compare some existing application-level

multicast middleware platforms and see to what extent they could be used in a wide-

area environment. We consider the following features:

 Architecture. The architecture is assumed to be implemented on top of a lower-

level network infrastructure. We can classify existing event systems by their

architectural model: unstructured p2p, structured p2p, and hybrid.

 Usability. It is important that the abstraction given by the middleware integrates

cleanly with the application programming language so that it is easy to use. We

will analyze API‘s complexity, multilanguage implementations and integration

with remote object models.

 Expressiveness. Application-level multicast solutions typically follow a

publish/subscribe approach. Therefore, subscribers (or consumers) express their

interest in a specified content by subscribing to this content. From the moment

of the subscription, they will start receiving events from publishers (or

producers) on the content. A publish/subscribe event system can be classified by

the different ways of specifying how to subscribe to and publish particular

content:

 Topic-based publish/subscribe: Participants publish notifications and

subscribe to topics, which are represented by keywords.

 Content-based publish/subscribe: A subscription scheme based on the

properties of the notifications is used. In other words, events are not

classified according to some pre-defined external criterion (e.g., topic

name), but according to properties of the events themselves.

 Type-based publish/subscribe: The name-based topic classification

scheme is replaced by other filtering events according to their type. This

enables the language and the middleware to be more closely integrated.

 Security. Several security models have been adopted by event-based

middleware systems. It would be desirable for only authorized subscribers to

receive notifications and to prevent unauthorized parties who are eavesdropping

on the network to catch relevant information contained by the event data. Many

approaches have led to server-authenticated solutions, where the publisher or the

subscriber must first authenticate to a server to be able to access the system; or

decoupled schemes, where security is managed in a distributed way by storing

some kind of key as a field within event data.

 Event Dispatching. Many event-based platforms are performance oriented,

meaning that message-delivery speed is highly optimized. This feature is

normally interesting in real time systems which care not about reliability but

performance.

68 CHAPTER 2. OVERVIEW AND BACKGROUND

 Durable Messaging. On the other hand, there are several event systems which

are more likely to offer reliability mechanisms instead of performance. These

platforms are specially important in enterprise systems which require a high

degree of trust in message delivery. They may provide some kind of relaying

service which can persistently store undelivered messages and deliver them

when the destination is reachable again.

2.3.2.2 Event Systems Review

Now that our reference model has been described, we take into account the various

aspects to analyze several event-based systems: Siena, Hermes, Narada, Bayeux, and

Scribe. Table 2.5 shows the results.

 Siena [64]. Siena is an event-based, content-based system with a pattern

expressiveness scheme and it features a hybrid architecture consisting of

hierarchical client/server and unstructured peer-to-peer variations. It provides a

C++ and Java API and currently it has neither security nor durable messaging

mechanisms. Simulations have demonstrated that in low densities of clients

which subscribe very frequently, the hierarchical client/server approach

performs better, but the unstructured peer-to-peer model is more suitable when

the total cost of communication is dominated by notifications.

 Hermes [100]. Hermes is an event-based middleware which follows a structured

p2p architecture based on an overlay network (Pastry). Its expressiveness model

follows the so called type- and attribute-based system, which is a combination

of the topic- and content-based systems, providing better integration with the

type model of an object-oriented programming language. A Java implementation

of its API is provided and communicates through XML-defined messages,

which makes it fully interoperable. Its main aim is to provide event dispatching

rather than persistent events, which will be incorporated in the future. At the

moment there are no access control mechanisms.

 Narada [68]. Narada was explicitly designed to be effective only when the

multicast group size is small. It supports unstructured p2p and centralized

models and, because it is Java Message Service (JMS) compatible, it is also a

topic-based system. Its security model is designed to use distributed key

management centers to achieve end-to-end integrity while ensuring that only

authorized entities can publish, subscribe and decrypt messages sent to a topic.

Durable messaging is supported, storing events marked as persistent to

databases. Currently, its API is Java-based.

 Bayeux [118]. The Bayeux wide-area event dissemination system is built on top

of the Tapestry [116] overlay network. Therefore, it supports very large

multicast groups and follows a topic-based expressiveness model. It is unsecure

unless the underlying network substrate provides a secure routing primitive.

Persistent messaging is not implemented and neither is access control. The

existing implementation is bundled with Tapestry with Java language. At the

beginning of this thesis, there was no downloadable implementation of Bayeux.

2.3 BACKGROUND 69

 Scribe [66]. Scribe offers an overlay multicast substrate on top of the Pastry

routing protocol. It introduces the concept of a topic (group identifier) to which

nodes can subscribe to. Once subscribed, the node receives all event

notifications that fire on that topic. Each group has a unique group identifier

(groupId). The Scribe node with an identifier (nodeId) closest to the groupId

acts as the rendez-vous point for the associated group. This rendez-vous point is

the root of the multicast tree created for the group. Group membership is

managed by creating a reverse path forwarding multicast tree rooted at the

rendez-vous point. In addition to the basic multicast functionality, Scribe

maintains the tree structure in the face of high levels of node failures. This is

imperative if the system is going to be robust. Scribe is therefore designed for

very large multicast groups and provides very good dispatching performance. It

has no mechanisms for durable messaging and its security model is implemented

through the secure routing functionalities of the underlying overlay network

substrate (if any). No access control mechanisms have yet been implemented.

Existing implementations include Java and C# languages.

 Architecture Usability Expressiveness Security Durable

Msg
Event

Dispatching

Siena Hybrid /
Unstructured p2p

C++ /
Java API

content-based w/
patterns

None None Good
performance

Hermes Structured p2p Java API +
XML msgs

type- and
attribute-based

None None Better
advertisement
dissemination
than in Siena

Narada Hybrid /
Unstructured p2p

Java API topic-based Distributed
key mgmt
centers

Supported Adequate for
small groups

Bayeux Structured p2p Java API topic-based If secure
routing is
available

None Adequate for
very large
groups

Scribe Structured p2p Java / C#
API

topic-based If secure
routing is
available

None Adequate for
very large
groups

Table 2.5. Comparison of event systems

70 CHAPTER 2. OVERVIEW AND BACKGROUND

2.3.3 Wide-Area Persistence Systems Architectures

Another of the pillars of our proposed wide-area middleware solution is the need for a

persistence service. This service should allow data to be eficiently stored and looked up

in a wide-area environment.

There has been a long history of research in the area of distributed file systems and

storage. Existing systems based on the client-server architecture such as AFS [84], NFS

[50], xFS [57], Sprite LFS [106] and Coda [87] do not meet our goals of scalability,

availability, and network performance.

We also rejected such approaches as a clustered farm of dedicated persistence servers

(or even the usage of semi-static p2p approaches, like in Plethora [74]), since we want

to provide a low-cost, easibly maintainable solution that makes good use of the

resources on the edges of the Internet. Therefore, following the same line, we focused

on wide-area persistence systems based on decentralized approaches. We studied CFS

[70], OceanStore [89], PAST [73] and OpenDHT [105]. At a basic level, they provided

the functionalities we required. We also reviewed a DHT that we had developed in our

research group ―Bunshin [95]― which we are currently using in our prototypes as our

decentralized persistence engine. These wide-area persistence systems are shown in

Table 2.6.

 File Size Limit Caching / Replication Implementation Extra Features

CFS None specified,
even though the

implementation has
some problems

storing files > 2.6
MB

Blocks are cached
along lookup route /

Blocks are replicated to
k CFS servers after the

successor

C/C++ Root block signed
using private key.
No explicit delete

operation.
Locality awareness.

Quota
management.

Load Balancing.

OceanStore None specified To achieve caching and
replication, data is

replicated on or near
the client machines
where the data is

accessed

Java Replicas cooperate
to share data and

disseminate
updates securely

and efficiently.

PAST None specified Cache copies are left on
nodes traversed by

lookup or insert
operations / Blocks are
replicated to k closest

neighbours

Java/.NET Reclaim
implementation.

Load balancing by
Pastry’s locality

properties.

OpenDHT 1024 bytes Data is replicated on or
near the client

machines where the
data is accessed

Language
independent

Access by Sun
RPC or XML-RPC

interface.

Bunshin None specified Cache copies are left on
nodes traversed by

lookup or insert
operations / Blocks are
replicated to k closest

neighbours

Java Multifield and
Multicontext

features.
Keyword Search.

Key links.
Link notifications.

Table 2.6. Comparison of the wide-area persistence systems analyzed

2.3 BACKGROUND 71

2.3.3.1 CFS

The Cooperative File System (CFS) [70] is a peer-to-peer read-only storage system that

provides provable guarantees for the efficiency, robustness, and load-balance of file

storage and retrieval. CFS does this with a completely decentralized architecture that

can scale to large systems. CFS servers provide a distributed hash table (which they

refer to as DHash) for block storage. CFS clients interpret DHash blocks as a file

system. DHash distributes and caches blocks at a fine granularity to achieve load

balance, uses replication for robustness, and decreases latency with server selection.

DHash finds blocks using the Chord [111] location protocol, which operates in time

logarithmic in the number of servers.

A CFS file system exists as a set of blocks distributed over the CFS servers available.

CFS client software interprets the stored blocks as file system data and meta-data and

presents an ordinary read-only file-system interface to applications. The core of the CFS

software consists of two layers, DHash and Chord. The DHash layer performs block

fetches for the client, distributes the blocks among the servers, and maintains cached

and replicated copies.

Layer Responsibility
FS Interprets blocks as files; presents a file system interface to applications

DHash Stores unstructured data blocks reliably
Chord Maintains routing tables used to find blocks

Table 2.7. CFS software layering

DHash provides load balance for popular large files by arranging to spread the blocks of

each file over many servers. To balance the load imposed by popular small files, DHash

caches each block at servers likely to be consulted by future Chord lookups for that

block. DHash supports pre-fetching to decrease download latency, and replicates each

block at a small number of servers, to provide fault tolerance. DHash enforces weak

quotas on the amount of data each server can inject, to deter abuse. Finally, it also

enables the number of virtual servers per server to be controlled, which in turn controls

how much data a server must store on behalf of others.

CFS provides consistency and integrity of file systems by adopting the SFSRO [78] file

system format. This protocol is the base of a fast and secure distributed read-only file

system. CFS extends SFSRO by providing the following desirable properties:

 Decentralized control. CFS servers need have no administrative relationship

with publishers. CFS servers can be ordinary Internet hosts whose owners

volunteer spare storage and network resources.

 Scalability. CFS lookup operations logarithmically depend on the number of

network servers.

 Availability. A client can always retrieve data as long as it is not trapped in a

small partition of the underlying network, and as long as one of the data‘s

replicas is reachable using the underlying substrate. This is true even if servers

72 CHAPTER 2. OVERVIEW AND BACKGROUND

are constantly joining and leaving the CFS system. CFS places replicas on

servers likely to be at unrelated network locations to ensure independent failure.

 Load balance. CFS ensures that the burden of storing and serving data is

divided among the servers in rough proportion to their capacity. It maintains

load balance even if some data are far more popular than others, through a

combination of caching and spreading each file‘s data over many servers.

 Persistence. Once CFS commits to storing data, it keeps it available for at least

an agreed period.

 Quotas. CFS limits the amount of data that any particular IP address can insert

into the system. This provides a degree of protection against malicious attempts

to exhaust the system‘s storage.

 Efficiency. Clients can fetch CFS data with a delay that is similar to that of FTP

because of CFS‘ use of efficient lookup algorithms, caching, pre-fetching, and

server selection.

Figure 2.13. CFS replication algorithm

The placement of an example block‘s replicas and cached copies around the Chord identifier ring. The

block‘s ID is shown with a tick mark. The block is stored at the successor of its ID, the server denoted

with the square. The block is replicated at the successor‘s immediate successors (the circles). The hops of

a typical lookup path for the block are shown with arrows; the block will be cached at the servers along

the lookup path (the triangles).

To sum up, and with reference to the properties we are interested in for our review, we

observe that CFS does not explicitly fix a file size limit. However, the implementation

(in C/C++) has some problems storing files that are larger than 2.6 MB. CFS provides

caching features, by caching blocks along the lookup route, and also block replication

among k CFS servers after the successor. It provides some extra features that include

root block signing using private key, no explicit delete operation, locality awareness,

quota management and a load balancing algorithm.

2.3 BACKGROUND 73

2.3.3.2 OceanStore

OceanStore [89] is another infrastructure that allows wide-area access to persistent

information through a peer-to-peer network. Since this kind of networks are comprised

of untrusted servers, data is protected through redundancy and cryptographic

techniques. To improve performance, data can be cached anywhere, anytime.

Additionally, monitoring of usage patterns allows adaptation to regional outages and

denial of service attacks; monitoring also enhances performance through proactive

movement of data. OceanStore is built on top of the Tapestry [116] peer-to-peer

substrate, and its prototype implementation is called Pond.

The OceanStore system has two design goals that differentiate it from similar systems:

the ability to be constructed from an untrusted infrastructure and the support of

nomadic data.

 Untrusted Infrastructure: OceanStore assumes that the infrastructure is

fundamentally untrusted. Servers may crash without warning or leak

information to third parties. This lack of trust is inherent in the utility model and

is different from other cryptographic systems. Only clients can be trusted with

cleartext—all information that enters the infrastructure must be encrypted.

However, rather than assuming that servers are passive repositories of

information (such as in CFS), in the case of OceanStore servers are able to

participate in protocols for distributed consistency management. To this end, it is

assumed that most of the servers work correctly most of the time, and that there

is one class of servers that can be trusted to carry out protocols on the client‘s

behalf (but not trusted with the content of a client‘s data). This responsible party

is financially responsible for the integrity of client data.

 Nomadic Data: In a system like OceanStore, locality is of extreme importance.

Thus, data can be cached anywhere, anytime. This policy is called promiscuous

caching. Data that is allowed to flow freely is called nomadic data. Note that

nomadic data is an extreme consequence of separating information from its

physical location. Although promiscuous caching complicates data coherence

and location, there is greater flexibility so that locality is more easily optimized

and consistency traded off for availability. To exploit this flexibility, continuous

introspective monitoring is used to discover tacit relationships between objects.

The resulting meta-information is used for locality management.

The fundamental unit in OceanStore is the persistent object. Each object is named by a

globally unique identifier, or GUID. Objects are replicated and stored on multiple

servers. This replication provides availability in the presence of network partitions and

durability against failure and attack. A given replica is independent of the server on

which it resides at any one time; these are referred as floating replicas.

A replica for an object is located through one of two mechanisms. First, a fast,

probabilistic algorithm attempts to find the object near the requesting machine. If the

probabilistic algorithm fails, location is left to a slower, deterministic algorithm. Objects

in the OceanStore are modified through updates. Updates contain information about

what changes to make to an object and the assumed state of the object under which

these changes are made. In principle, every update to an OceanStore object creates a

74 CHAPTER 2. OVERVIEW AND BACKGROUND

new version. While more expensive to implement than update-in-place consistency,

consistency based on versioning provides for cleaner recovery in the face of system

failures.

OceanStore objects exist in both active and archival forms. An active form of an object

is the latest version of its data together with a handle for update. An archival form

represents a permanent, read-only version of the object. Archival versions of objects are

encoded with an erasure code and spread over hundreds or thousands of servers; since

data can be reconstructed from any sufficiently large subset of fragments, the result is

that nothing short of a global disaster could ever destroy information.

For our review, there is no file size limit specified in OceanStore, caching and

replication is achieved by replicating data on or near the client machines where the data

is accessed, and the extra features included are a Java implementation of OceanStore,

replica cooperation in data sharing and secure and efficient dissemination of updates.

2.3.3.3 PAST

The PAST [108] system is composed of nodes connected to the Internet, where each

node is capable of initiating and routing client requests to insert or retrieve files.

Optionally, nodes may also contribute storage to the system. The PAST nodes form a

self-organizing overlay network. Inserted files are replicated on multiple nodes to

ensure persistence and availability. With high probability, the set of nodes over which a

file is replicated is diverse in terms of geographic location, ownership, administration,

network connectivity, rule of law, etc. Additional copies of popular files may be cached

in any PAST node to balance query load.

While PAST offers persistent storage services, its access semantics differ from those of

a conventional filesystem. Files stored in PAST are associated with a quasi-unique fileId

that is generated at the time of the file‘s insertion into PAST. Therefore, files stored in

PAST are immutable since a file cannot be inserted multiple times with the same fileId.

Files can be shared at the owner‘s discretion by distributing the fileId (potentially

anonymously) and, if necessary, a decryption key. PAST does not support a delete

operation. Instead, the owner of a file may reclaim the storage associated with a file,

which does not guarantee that the file is no longer available. These weaker semantics

avoid agreement protocols among the nodes storing the file. PAST is built upon Pastry,

thus ensuring that client requests are reliably routed to the appropriate nodes. Client

requests to retrieve a file are routed to a node that is close in the network (network

proximity is based on a scalar metric, such as the number of IP hops, geographic

distance, or a combination of these and other factors) to the client that issued the

request, among all live nodes that store the requested file. The number of PAST nodes

traversed while routing a client request is at most logarithmic in the total number of

PAST nodes in the system under normal operation.

PAST maintains the invariant that k copies of each inserted file are maintained on

different nodes within a leaf set. Therefore, storage nodes and files in PAST are all

assigned uniformly distributed identifiers, and replicas of a file are stored at the k nodes

whose nodeIds are numerically closest to the file‘s fileId.

2.3 BACKGROUND 75

The PAST system exports the following set of operations to its clients:

fileId = insert(name, owner-credentials, k, file)

stores a file at a user-specified number k of diverse nodes within the PAST network. The

operation produces a 160-bit identifier (fileId) that can be used subsequently to identify the file.

The fileId is computed as the secure hash (SHA-1) of the file‘s name, the owner‘s public key,

and a randomly chosen salt. This choice ensures (with very high probability) that fileIds are

unique. Rare fileId collisions are detected and lead to the rejection of the file inserted last.

file = lookup(fileId)

reliably retrieves a copy of the file identified by fileId if it exists in PAST and if one of the k

nodes that store the file is reachable via the Internet. The file is normally retrieved from a live

node ―near‖ the PAST node issuing the lookup (in terms of the proximity metric), among the

nodes that store the file.

reclaim(fileId, owner-credentials)

reclaims the storage occupied by the k copies of the file identified by fileId. Once the operation

completes, PAST no longer guarantees that a lookup operation will produce the file. Unlike a

delete operation, reclaim does not guarantee that the file is no longer available after it is

reclaimed. These weaker semantics avoid complex agreement protocols among the nodes

storing the file.

Table 2.8. PAST exposed API

To sum up, PAST does not specify a file size limit, there are Java and .NET

implementations of PAST, cache copies are left on nodes traversed by lookup or insert

operations, and replication is achieved by replicating blocks to k‘s closest neighbours.

As extra features we can get a reclaim implementation, and load balancing by Pastry‘s

locality properties.

2.3.3.4 OpenDHT

OpenDHT [105] is a publicly accessible distributed hash table (DHT) service. Unlike

the usual DHT model, clients of OpenDHT do not need to run a DHT node in order to

use the service. Instead, they can issue put and get operations to any DHT node, which

processes the operations on their behalf. No credentials or accounts are required to use

the service, and the available storage is fairly shared amongst all active clients. This

service model of DHT usage greatly simplifies deploying client applications. By using

OpenDHT as a highly-available naming and storage service, clients can ignore the

complexities of deploying and maintaining a DHT and instead concentrate on

developing more sophisticated distributed applications. OpenDHT's simple put-get

interface is accessible over both Sun RPC and XML RPC. As such, the service is easy

to access from virtually every programming language and from behind almost all NATs

and firewalls. OpenDHT is built on prior efforts. The Bamboo overlay network

implementation is used as its routing layer, and a soft-state storage layer is implemented

on top.

The main difference between OpenDHT and other persistent DHT implementations is

that OpenDHT is currently alive and kicking. It is deployed on the PlanetLab [69]

network and, therefore, is accessible worldwide. Specifically, its goal is to provide a

free, public DHT service that runs on PlanetLab today. In the longer-term, it is

envisioned that this free service could evolve into a competitive commercial market in

76 CHAPTER 2. OVERVIEW AND BACKGROUND

DHT service. Because OpenDHT operates on a set of infrastructure nodes, applications

need not concern themselves with DHT deployment, or run application-specific code on

these infrastructure nodes. This is quite different from most other uses of DHTs, in

which the DHT code is invoked as a library on each of the nodes running the

application. The library approach is very flexible, as application-specific functionality

can be put on each of the DHT nodes, but each application must deploy its own DHT.

The service approach adopted by OpenDHT offers the opposite tradeoff: less flexibility

in return for less deployment burden. OpenDHT provides a home for applications that

are more suited to this compromise.

Figure 2.14. OpenDHT architecture

However, OpenDHT is limited to storing 1024-byte limit values. If larger values are to

be stored, they have to be split into blocks (à la CFS).

Summarizing, OpenDHT is limited to 1024 byte files (file size can be increased by

concatenating 1024 byte blocks on the DHT), data is replicated on or near the client

machines where the data is accessed. It is language independent, since OpenDHT is

accessed via Sun RPC or an XML-RPC interface.

 Puts/Gets

 OpenDHT Network

Application

RPC

Client

Client

Client

Client

Client

Client

Client Client

Client

Client

Client

Client

Client

Client

Client

2.3 BACKGROUND 77

2.3.3.5 Bunshin

Bunshin [95] is another DHT persistent system implemented in our research group [7].

It runs on top of the Pastry overlay substrate, and it came about because we had

previously experimented with such practical DHT implementations as PAST which,

however, did not guarantee a solution to the problem of key movement, when nodes

joined or left the network. Sometimes, keys were not found or they simply returned a

null value. Bunshin solves this problem by using an active replication scheme, as well

as introducing new features which enrich this DHT layer.

Bunshin provides the standard put() and get() methods of a DHT, replicating data into

REPLICA_FACTOR replicas. Possible node replicas are obtained via the underlying

layer replicaSet() method. It also notifies of node joins / leaves by the update() method.

However, to avoid event losses and, consequently, update() misses, each node

periodically checks:

 whether all keys currently stored by the current node already belong to it. If not,

the key/value pairs affected are inserted into the newly corresponding node.

 whether all replicas of the current node‘s key/value pairs are still alive, and their

number is equal to REPLICA_FACTOR. If they are not, a new set of replicas

must be chosen and updated accordingly.

 whether the owner of all the replicas assigned to the current node is still alive. If

it is not, we may find that the new owner knows nothing about our key. Here we

can choose between a variety of policies, but the main idea is that nodes notify

the new owner and follow a versioning control to choose the newest one.

Bunshin is not a conventional DHT in the key/value sense of structuring, but it makes it

possible to deal with data as if they were a hash table too: that is to say, that for a

specified key we can hold as many values as we want, identified with a subkey that we

call field. The other possibility, at a higher level of abstraction, is that a node can not

only be seen as the container of one bucket, but of as many of them as we need.

Therefore, a bucket lies within a context. If the application needs to have different

buckets it will not be forced to instantiate a new Bunshin application for each one of

them, but to indicate the context in which it will work. In summary, N buckets are

arranged with values of M fields, depending on the particular application needs. These

functionalities are called multifield and multicontext, respectively.

Moreover, Bunshin also provides an upper search engine layer, which gives the

following services:

 Keyword service – allows keywords associated to a determinate key-value pair

to be inserted. Querying these keywords returns a list of the contents associated

to them.

 Key link service – allows maintenance of input and output link lists to be

maintained. This way, it is easy to relate the keys of the inserted metadata.

Therefore, we can easily find out how many links are pointing to / from a

specified key.

78 CHAPTER 2. OVERVIEW AND BACKGROUND

 Link notification service – every time a link is added or removed, applications

are notified by this service.

Bunshin‘s persistence engine stores values in a node‘s memory, and in a node‘s file

system.

To sum up, Bunshin does not impose file size limitations, cache copies are left on nodes

traversed by lookup or insert operations, blocks are replicated to k closest neighbours,

and there is a Java implementation of this DHT. The extra features included are

multifield and multicontext, keyword search, key links and link notifications.

2.4 RELATED WORK IN WIDE-AREA MIDDLEWARE SYSTEMS 79

2.4 Related Work in Wide-Area Middleware Systems

In the previous section we have reviewed the state of the art in the various layers that

make up our middleware proposal. Now we are going to analyze existing wide-area

middleware systems, focusing on how they interact with each of the layers described in

the background. We shall see that most of these approaches do not provide developers

with an abstraction level that makes their applications easy to implement. However,

before describing such systems, we provide a brief overview of distributed middleware

techniques available to date.

2.4.1 Traditional Distributed Middleware Overview

Several middleware approaches can be used to design distributed applications. In

chronological order, distributed objects was the first approach to emerge followed by

distributed reusable components. The future trend seems to follow another paradigm,

called service oriented architectures.

The distributed object paradigm offers two main important facilities when building

open systems: firstly, it defines the organization of a system as a collection of objects

which collaborate to perform a common task; secondly, it achieves a high degree of

reutilization, due to the mechanisms of inheritance and polymorphism. Distributed

object middlewares offer a set of common services to deal with such objects. These may

include naming services, to help locate objects, persistence services, to allow the

persistence of objects‘ state information, object communication services, and many

others.

Nevertheless, despite its demonstrated efficiency in software systems, this paradigm

does not clearly express the distinction between the computational and the

compositional points of view of an application. Moreover, the object‘s view prevails

over the component‘s view as an entity that must be composed by others to conform an

application. Based on this idea, the notion of component orientation emerges as an

extension to object orientation [112].

Compositional models extend the object oriented paradigm by adding new abstractions

and concepts that express composition relationships between system components. A

component oriented environment emphasizes the definition of standard interfaces which

indicate how their components must be used. These interfaces define the component as

a collection of methods invoked whenever a service is required.

The use of components is based on the plug-and-play concept: that is, we can connect a

component as a part of an application without needing to change it for it to start

working. This idea applies to many commercial products, and eases the building of

configurable applications whose functionalities depend on their aggregated components.

Normally, component-based software is built on top of frameworks, which provide the

life cycle services required by components. These frameworks may also manage

component activation and passivation, persistence, naming, etc.

80 CHAPTER 2. OVERVIEW AND BACKGROUND

One step beyond components, service oriented architectures (SOA) expresses a

perspective of software architecture that defines the use of loosely coupled software

services to support the requirements of the business processes and software users. In an

SOA environment, resources on a network are made available as independent services

that can be accessed without knowledge of their underlying platform implementation.

SOA can also be regarded as a style of information systems architecture that enables

applications to be created that are built by combining loosely coupled and interoperable

services. These services interoperate on the basis of a formal definition which is

independent of the underlying platform and programming language. SOA can support

integration and consolidation activities within complex enterprise systems, but SOA

does not specify or provide a methodology or framework for documenting capabilities

or services.

2.4.2 Globe

A number of companies have advocated peer-to-peer solutions to problems such as

distribution of streaming media, web hosting, distributed auctions, etc. There is renewed

interest in a large body of distributed systems research on resource sharing and

collaboration in both LAN and WAN environments. In particular, the so called WAN-

OS projects such as Legion [90] or Globe [115] are well suited for supporting arbitrary

p2p applications since their goal is to make the Internet look like a single parallel

machine by hiding (to the extent desired by the developer) all the complexities

associated with vastly different machines, local operating systems, communication

protocols, local resource management, access control, and security policies.

The Globe System [115] aims to support numerous users, clients and objects through

the Internet. One of the most important features of Globe is its distributed shared object

concept, which allows objects to be replicated and distributed between different

machines. However, this means that Globe can only provide one invocation type: that of

synchronous calls. It has neither support for notifications nor callbacks. Therefore, there

is no concept of one-to-many calls in Globe and, as a consequence, there is no efficient

group communication service.

One of Globe‘s important hot spots is its wide-area location service which maps object

identifiers to the locations of moving objects. Globe arranges the Internet as a hierarchy

of geographical, topological, or administrative domains, effectively constructing a static

world-wide search tree, much like DNS. Information about an object is stored in a

particular leaf domain, and pointer caches provide search short cuts. The Globe system

handles high load on the logical root by partitioning objects among multiple physical

root servers using hash-like techniques.

The distributed objects used in a Globe application are hosted on a collection of Globe

object servers. An object server is a user-level process that can host local

representatives (i.e. replicas) of a large number of objects. A machine running a Globe

object server is known as a Globe site. In addition to an object server, a Globe site may

run additional processes that implement the Globe naming service or allow non-Globe

clients to access distributed shared objects.

2.4 RELATED WORK IN WIDE-AREA MIDDLEWARE SYSTEMS 81

Globe builds fault tolerance and high availability through its replication subobject,

which is responsible for keeping the state of object replicas consistent according to the

consistency model chosen for any particular distributed object. Object state is

periodically checkpointed to disk in order to be able to re-create objects and their

replicas in case of a node crash.

Dynamicity is currently not supported on Globe because it has not been designed to

cope with a regularly changing set of participants. As a consequence, a Globe site

requires more than 20 external libraries or tools, most of which have to be installed by

the site administrator himself, as they are not typically installed on most systems.

Installing all these packages is time-consuming and tedious. Furthermore, after

installing the packages the site administrator has to configure the various components of

the Globe middleware, which involves setting a lot of parameters. Finally, to finish the

configuration the administrator must register his site with Globe‘s group, which is a

manual process that takes some time.

Globe was designed with the requirement of usability in mind [58], and it therefore

provides an easy-to-use API so distributed objects and applications are simple to

develop.

2.4.3 Legion

Legion [90] provides an object based service model so that objects can be replicated and

located arbitrarily transparently. Legion‘s scheme is similar to the one used by Globe

for separating the object name from its address. However, the main difference between

both systems is the way objects are considered. In Globe, objects are assumed to be

physically distributed over many resources in the system. However, in Legion, objects

can be physically distributed over multiple physical resources, but are expected to

physically reside in a single address space. These conflicting views of objects result in

different mechanisms for object communication: Globe loads part of the object (called a

local object) into the caller‘s address space, whereas Legion sends a message of a

specified format from the caller to the callee. Further, although Legion may provide

support for data streams, its purpose is broader than standalone support for the

communication paradigm.

Legion does not comply with the dynamicity requirement, which is not targeted to the

edges of the Internet. Legion‘s main aim is to provide a worldwide supercomputer,

composed of relatively static powerful servers, much like the target of Grid Computing.

It provides fault tolerance mechanisms, but keeps in mind that failures will not be as

frequent as in a highly dynamic environment.

The high availability requirement is partly implemented, since it provides object

replication primitives, but the semantics of group communication are left to the

developer. It also provides fault tolerance mechanisms, and programming Legion

applications is not a trivial task.

Finally, Legion does not provide any kind of load balancing mechanisms since, as stated

by the authors, an object could easily become a bottleneck and limit application

performance. Our idea of load balancing would perfectly suit this scenario. Therefore, a

vast number of requests should be dealt with by being distributed among active object

82 CHAPTER 2. OVERVIEW AND BACKGROUND

replicas transparently by the middleware. Legion does not do so in a transparent way,

and this responsibility is left to the application developer.

2.4.4 JxtaJeri

JxtaJeri [30] is an integration of JxTA [39] and Jini [48] that lets programmers use the

Java RMI programming model to invoke services over a JxTA p2p network. This

package uses JxTA‘s sockets to implement a Jini Extensible Remote Invocation (JERI)

[29] transport. JxtaJeri enables a service to expose its remote interfaces over the JxTA

network. A programmer can use the higher-level remote procedure call model to

construct services. JxtaJeri is based on unstructured JxTA networks, which means that

resource location is probabilistic.

This middleware does not allow for implicit load balancing, high availability or fault

tolerance mechanisms. Developers have to explicitly deal with these issues.

By using JxTA protocols, JxtaJeri can benefit from many advantages such as network

address translation and firewall traversal. There is very little information about this

project, and at the time of the writing of this thesis even its main website was

unavailable.

2.4.5 The Peer-to-Peer Sockets Project

The Peer-to-Peer Sockets Project [38] (P2P Sockets) reimplements Java's standard

Socket, ServerSocket, and InetAddress classes to work on the JxTA p2p network,

rather than on the standard TCP/IP network. It also includes ports of many popular web

packages, such as the Jetty web server [28], the Apache XML-RPC client and server

libraries [6], and the Apache Jasper JSP engine [5], to run on the P2P Sockets

framework.

P2P Sockets support high availability, dynamicity and fault tolerance requirements, and

since they are based on JxTA, they can easily do things that ordinary server sockets and

sockets cannot handle. First, creating server sockets that can fail-over and scale is easy

with P2P Sockets. Many different peers can start server sockets for the same host name

and port, such as www.deim.urv.cat on port 80. When a client opens a P2P socket to

www.deim.urv.cat on port 80, it will randomly connect to one of the machines that is

hosting this port. All of these server peers might be hosting the same web site which for

example, makes it very easy to partition client requests across different server peers or

to recover from losing one server peer.

Even though P2P Sockets provides many interesting services, it lacks the usability and

the level of abstraction required for higher-level developers. Programming at the socket

layer is too low-level when distributed applications are being developed. Therefore, it is

hard to achieve common services like group communication, proximity awareness, and

even data persistence, without needing to hard code them. As a consequence, we believe

P2P Sockets does not provide the level of abstraction required to develop complex

wide-area distributed applications.

2.4 RELATED WORK IN WIDE-AREA MIDDLEWARE SYSTEMS 83

2.4.6 The Common API for Structured Overlays

The Common API [72] for Structured p2p Overlays attempts to identify the

fundamental abstractions provided by structured overlays and to define APIs for the

common services they provide. As the first step, a key-based routing API (KBR) is

defined, which represents basic (tier 0) capabilities that are common to all structured

overlays. The KBR is easily implemented by existing overlay protocols and it makes it

possible to efficiently implement higher level services and a wide range of applications.

Thus, the KBR is the common denominator of services provided by existing structured

overlays. In addition, a number of higher level (tier 1) abstractions are identified and it

is shown how they can be built upon the basic KBR. These abstractions include

distributed hash tables (DHT), group anycast and multicast (CAST), and decentralized

object location and routing (DOLR).

Figure 2.15. Common API Diagram

Basic abstractions and APIs, including Tier 1 interfaces: distributed hash tables (DHT), decentralized

object location and routing (DOLR), and group anycast and multicast (CAST).

Figure 2.15 illustrates how these abstractions are related. Key-based routing is the

common service provided by all systems at tier 0. At tier 1, we have higher level

abstractions provided by some of the existing systems. Most applications and higher-

level (tier 2) services use one or more of these abstractions.

The DHT abstraction provides the same functionality as a traditional hash table, by

storing the mapping between a key and a value. This interface implements a simple

store and retrieve functionality, where the value is always stored at the live overlay

node(s) to which the key is mapped by the KBR layer. Values can be objects of any

type.

The DOLR abstraction provides a decentralized directory service. Each object replica

(or endpoint) has an objectID and may be placed anywhere within the system.

Applications announce the presence of endpoints by publishing their locations. A client

Key-Based Routing Layer (KBR)

Distributed Hash Table
Layer (DHT)

Group Multicast and
Anycast Layer (CAST)

CFS

Decentralized Object Location
and Routing Layer (DOLR)

PAST Scribe Bayeux OceanStore Tier 2

Tier 1

Tier 0

84 CHAPTER 2. OVERVIEW AND BACKGROUND

message addressed with a particular objectID will be delivered to a nearby endpoint

with this name.

The CAST abstraction provides scalable group communication and coordination.

Overlay nodes may join and leave a group, multicast messages to the group, or anycast

a message to a member of the group. Because the group is represented as a tree,

membership management is decentralized. Thus, CAST can support large and highly

dynamic groups. Moreover, if the overlay that provides the KBR service is proximity

aware, then multicast is efficient and anycast messages are delivered to a group member

near the anycast originator.

Table 2.9 summarizes the methods all these interfaces must implement

DHT DOLR CAST

put (key, data) publish (objectId) join (groupId)

remove (key) unpublish (objectId) leave (groupId)

value = get (key) sendToObj (msg,

objectId, [n])

multicast (msg, groupId)

anycast (msg, groupId)

Table 2.9. Common API's Tier 1 API

All services defined at tier 1 require interfacing with the lower key-based routing API layer (tier 0), which

is the core all structured overlay network implementations must provide.

Table 2.10 briefly describes the methods and their main use:

2.4 RELATED WORK IN WIDE-AREA MIDDLEWARE SYSTEMS 85

Method signature Method type Description

void route (key: K, msg: M,

NodeHandle hint)
Message

routing

Forwards a message M, towards the root of key

K. The optional hint argument specifies a node

that should be used as a first hop in routing the

message.
void forward (key: K, msg:

M, NodeHandle nextHopNode)
Message

routing

This upcall is invoked at each node that

forwards message M, including the source

node, and the key‘s root node. The upcall
informs the application that message M with

key K is to be forwarded to nextHopNode.
void deliver (key: K, msg:

M)
Message

routing

This function is invoked on the node that is the

root for key K upon the arrival of message M.
NodeHandle[] local_lookup

(key: K, int: num, boolean:

safe)

State access

routing

This call produces a list of nodes that can be

used as next hops on a route towards key K,

such that the resulting route satisfies the

overlay protocol‘s bounds on the number of

hops taken.
NodeHandle[] neighborSet

(int: num)
State access

routing

This operation produces an unordered list of

nodehandles that are neighbours of the local

node in the ID space. Up to num nodehandles

are returned.
NodeHandle[] replicaSet

(key: K, int: max_rank)
State access

routing

This operation returns an unordered set of

nodehandles on which replicas of the object
with key K can be stored.

update (NodeHandle: n,

boolean: joined)
State access

routing

This upcall is invoked to inform the application

that node n has either joined or left the

neighbour set of the local node as that set

would be returned by the neighborSet call.
boolean range (NodeHandle:

N, rank: r, key: lkey, key:

rkey)

State access

routing

This operation provides information about

ranges of keys for which node N is currently a

r-root

Table 2.10. Common API's Tier 0 API

As we can clearly observe, the Common API provides the upper levels with three

interaction layers which perfectly fit into the layers we have defined throughout this

chapter: a wide-area routing layer (KBR), an application-level multicast layer

(CAST), and an object persistence layer (DHT). Even though it defines the same

layers we propose, the Common API does not comply with all of our requirements for a

wide-area middleware. This is because the approach is far too low-level. Developers

will find it difficult to deal with messages, updates, puts and gets. It is clear that the

Common API provides the primitives required to implement many services, but not the

services themselves. Therefore, there is no implicit load balancing service, no fault

tolerance, and no high availability.

2.4.7 Grid Computing

The term Grid computing [62] originated in the early 1990s as a metaphor to suggest

that accessing computer power is as easy as accessing an electric power grid.

The Grid can be defined as the ability, using a set of open standards and protocols, to

gain access to applications and data, processing power, storage capacity and a vast

array of other computing resources over the Internet. A Grid is a type of parallel and

distributed system that enables the sharing, selection, and aggregation of resources

86 CHAPTER 2. OVERVIEW AND BACKGROUND

distributed across multiple administrative domains based on the resources availability,

capacity, performance, cost and users' quality-of-service requirements [27].

The ideas of the Grid were brought together by Ian Foster, Carl Kesselman and Steve

Tuecke, the so called fathers of the Grid. They led the effort to create the Globus

Toolkit [76] incorporating not just CPU management (e.g. cluster management and

cycle scavenging) but also storage management, security provisioning, data movement,

monitoring and a toolkit for developing additional services based on the same

infrastructure including agreement negotiation, notification mechanisms, trigger

services and information aggregation. In short, the term Grid has much further reaching

implications than the general public believes. While Globus Toolkit remains the de

facto standard for building Grid solutions, a number of other tools have been built that

provide a subset of services needed to create an enterprise Grid.

Grid computing offers a model for solving massive computational problems by making

use of the unused resources (CPU cycles and/or disk storage) of large numbers of

disparate computers, often desktop computers, treated as a virtual cluster embedded in a

distributed telecommunications infrastructure. Grid computing's focus on the ability to

support computation across administrative domains sets it apart from traditional

computer clusters or traditional distributed computing.

This approach means that secure authorization techniques must be used to allow remote

users to control computing resources. Grid computing involves sharing heterogeneous

resources (based on different platforms, hardware/software architectures, and computer

languages), located in different places belonging to different administrative domains

over a network using open standards. In short, it involves virtualizing computing

resources.

Focusing on related work in Grid Computing and Distributed Object Technology, we

can find that existing RPC-based solutions are typically built using the GridRPC API

[109]. This API was designed to address one of the factors that hindered widespread

acceptance of Grid computing – the lack of a standardized, portable and simple

programming interface. Since the GridRPC interface does not dictate the

implementation details of the servers that execute the procedure call, there are several

implementations of the GridRPC API, each of which has the ability to communicate

with one or more Grid computing systems.

Two well-known implementations of GridRPC are: one which lies on top of NetSolve

[62], and Ninf-G [62], which is a a full reimplementation of Ninf on top of the Globus

Toolkit [76].

NetSolve has three main entities: the client, the server and the agent. Clients and servers

model the typical behaviour in RPC systems, whereas agents maintain a list of all

available servers, perform resource selection for all client requests and ensure load

balancing of the servers. In its latest versions, NetSolve also includes support for basic

Kerberos authentication. Further, fault detection and recovery is managed in such a way

that it is transparent to the user. The agent keeps track of the status of all available

servers so if there is a problem the agent can choose a new server to handle the problem.

2.4 RELATED WORK IN WIDE-AREA MIDDLEWARE SYSTEMS 87

Ninf-G is a GridRPC system built on top of the Globus Toolkit. Globus provides Grid‘s

lower-level features such as authentication, authorization, secure communication,

directory services, and many others. Nevertheless, the Globus Toolkit alone is

insufficient for programming the Grid at higher-level layers. Ninf-G is a full

reimplementation of Ninf. This system provides a mechanism to gridify an application

or a library by using the Ninf IDL language to generate the necessary stubs. The

executable is registered into Globus‘ Monitoring and Discovery System (MDS), and

Globus-I/O is used for communication between client and server.

Even though Grid toolkits, and more specifically the Globus Toolkit, apparently seem to

comply with many of the requirements we have proposed, this is far from the case. It is

true that the Grid provides scalability, high availability, fault tolerance, and even load

balancing. Nevertheless, it is more focused on solving large computational problems or

dealing with huge datasets. Therefore, Grids are normally composed of very powerful

servers which deal with these kinds of calculations. It is true that Grids define a very

strict security framework, so that operations between nodes can be permitted or denied.

However, this limits its dynamicity, since each node willing to enter a Grid will need to

obtain a set of public/private keys. Moreover, Grids do not easily support the use of

computational resources on the edges of the Internet for the reason stated above.

As a consequence, we believe that Grids‘ functionalities are not enough to solve the

problem stated in this thesis, although a relatively new variation of Grids might be able

to: p2p Grids.

In an attempt to merge the best of both p2p and the Grid worlds, [62] defines the

concept of a p2p Grid. A p2p Grid contains a set of services that includes the services of

Grids and p2p networks and supports natural environments with features of both

limiting cases. In p2p Grid architecture, Web services play a very important role. In

addition, there is an event service which links these Web services and other resources.

In p2p Grids, everything is a resource, and they are exposed directly to users and to

other services. An important feature is that these entities are built as distributed objects

which are constructed as services whose properties and methods can be accessed by a

message-based protocol.

When we studied this world, no P2P grids were based on a structured p2p substrate.

Therefore, in [98] we adopted the term structured peer-to-peer grid, defined as a p2p

Grid whose network routing substrate is based upon a structured key-based routing

overlay infrastructure. The main advantage of this approach is that these kinds of Grids

can benefit from better message routing and its inherent locality properties.

Therefore, the structured p2p Grid concept seems to be a good starting point, even

though it is not a middleware, but an architectural premise on which middleware

services can be built.

88 CHAPTER 2. OVERVIEW AND BACKGROUND

2.4.8 Wide-Area Component-Based Architectures

A number of component-oriented architectures have been developed over the years.

CORBA Component Model [35], DCOM [32] (or the .NET Framework [54]), and

Enterprise Java Beans (EJBs) [46] are perhaps the most popular of the traditional client-

server based component models. There are also p2p and Grid component architectures,

which include, for example, Fractal/ProActive [60] or P2PComp [75].

CORBA Component Model (CCM), EJBs, and .NET are all based on client-server

environments. They provide a rich set of services such as transactions, security,

persistence, naming or events. Their container models usually require powerful server

machines to run on. CCM, EJBs, and .NET are aimed at client-server scale applications,

whereas our framework is for wide-area applications. All these solutions can support

fault tolerance, load balancing and high availability by means of expensive cluster

server topologies, and hardware load balancers.

In the Grid world there are approaches like Fractal/ProActive [60], which is defined as a

hierarchical and dynamic component model. Nevertheless, its approach is different from

ours, in the sense that virtual node and virtual machine mapping is performed on the

component‘s deployment descriptor, thus not allowing self adaptation to node failures.

As a consequence, it does not support fault tolerance nor dynamicity. Moreover, it

cannot benefit from any group communication network proximity services, since it has

no support for them at present.

Finally, P2PComp [75] is built on top of an unstructured p2p network, and its main aim

is to address the development needs of mobile p2p applications. It features a lightweight

container model, and provides many services, including synchronous / asynchronous

remote invocations, hot swapping, service fetching and ranking. All these services are

basically designed for highly mobile and dynamic applications. Fault tolerance and high

availability can be emulated with the hot swapping service, which automatically tries to

re-locate a service which for some reason becomes unavailable. However, there is no

scalability proof of P2PComp (since evaluations only involve up to five devices), and it

is not dynamically adaptive to high request peaks, so it does not support load balancing.

2.5 Conclusions

In this Chapter we have defined the requirements for our wide-area middleware

proposal. We have presented the big picture of our generic proposed model, and have

outlined that it is based on three main core layers, the result of the specified

requirements: a wide-area routing substrate layer, a wide-area application-level

multicast layer, and a wide-area persistence service layer. These tiers are the main

building blocks which support our whole proposal.

We have analyzed the state of the art of each of these layers, and discussed their main

features. We have described the existing decentralized routing layers, focusing on p2p

architectures, and their evolution. We have also described the background to wide-area

event systems, and proposed a reference model for comparison. Finally, we have

2.5 CONCLUSIONS 89

analyzed the existing wide-area persistence systems, which are suitable for data storage

and retrieval facilities.

Having described all the background, we analyzed the related work on existing wide-

area middleware systems. We compared them and related them to each of the layers and

to our requirements. Table 2.11 summarizes the requirements and the related work. It

can be seen that none of these middleware approaches fully complies with the

requirements we have described, so we conclude that none of them can provide what we

need.

 Globe Legion JxtaJeri P2PSockets

Scalability

Fault
Tolerance
Load
Balancing

Dynamicity

Use of edges
of Internet
High
Availability

Partly

Usability and
Programming
Abstractions

Distributed objects

Object location
service

Distributed objects

Object location
service

Remote Method

Invocation

Too low level

 Common API Grid CORBA/

.NET/EJB
P2PComp Our Model

Scalability

Fault
Tolerance
Load
Balancing
Dynamicity

Use of edges
of Internet
High
Availability
Usability and
Programming
Abstractions

Location
service
Group

communication
Too low level,

however

Distributed
objects and
components
Too complex

Distributed

components
Location service

Group
communication

Distributed

components
Location
service
Group

communication

Distributed
objects and
components

Location
service
Group
comm.

Table 2.11. Comparison of the different Wide-Area Middleware approaches

Some of them may not be particularly targeted to wide-area environments. Fractal/ProActive has not been
included, because it is based on the Grid and can therefore be considered part of the Grid column.

90 CHAPTER 2. OVERVIEW AND BACKGROUND

Therefore, no wide-area middleware approach is scalable, provides transparent fault

tolerance and load balancing services, is adaptable to constant node joins and leaves,

and uses the resources provided by the computers at the edges of the Internet. Moreover

some approaches are also of limited usability and do not provide high availability

guarantees.

Consequently, there is a need for a wide-area middleware platform which fulfills all the

requirements described in this chapter. If they are all to be fulfilled, we need the three

layers already mentioned, which can also introduce such new functionalities as

proximity calls using anycast primitives provided by the event service, decentralized

object location and distributed interception among others. We also have the chance to

use the potential of structured peer-to-peer overlay networks as our underlying network

substrate, and benefit from their inherent properties which include fault tolerance,

efficient message routing, self-healing, self organization, and many others. As a

consequence, and although our proposed model is thought to be generic regarding the

specific implementations of the three defined layers, we shall implement our wide-area

middleware on top of a structured p2p overlay network. This is, to the best of our

knowledge, the first complete middleware platform that has been built on top of this

kind of network.

By using the three main core pieces together, we build our wide-area middleware

framework which provides a set of common services to the distributed application

developer. The proposed generic model is designed and constructed using two

complementary middleware approaches: remote objects and distributed reusable

components. The remote object layer provides the foundations and the most important

innovative services to the component layer. This component layer enables the

lightweight components to be defined and deployed. The components can later be

reused to provide a higher level of abstraction for the wide-area distributed applications.

The applications developed by our middleware will also satisfy the requirements of the

wide-area applications:

 The applications developed by our middleware encourage good use of the

resources available on the edges of the Internet and can share resources.

Data is shared throughout the nodes that conform the network thanks to the

routing substrate, and the persistence layers of our middleware, which store and

retrieve data in / from nodes.

 Applications can collaborate among groups, using the group communication

primitives of the wide-area application-level multicast infrastructure of our

middleware.

 Applications are fault tolerant, and resources are highly available, by using

transparent replication of data in the persistence layer of our middleware.

 New wide-area applications can be easily developed. Wide-area applications

can be developed using p2p lightweight components. These components can

also be easily deployed.

2.5 CONCLUSIONS 91

 Applications can benefit from location awareness if the application-level

multicast layer of our middleware is proximity-aware.

 Connectivity can be maximized. This requirement strongly depends on the

routing substrate used. NAT and firewall traversal can be successfully dealt with

these days. Even though many of the structured p2p overlay network protocols

do not explicitly deal with these problems, it is expected that in the near future,

these technicalities will be resolved.

 The security requirement, which is beyond the scope of this thesis, is not

explicitly solved by our middleware. However, we have tried to tighten the

security policies in our SNAP deployment framework, described in chapter 4, by

only allowing administrators to deploy applications onto the network by using

public/private keys and signatures.

The next chapter introduces the proposed middleware framework and its inovative

services, and describes how it fits in with the different layers so that all of its

functionalities are provided to the upper layers. It is important to note that what is

described is a generic proposal for a wide-area middleware framework, which means

that it is not necessarily tied to any specific underlying technology. It is clear that when

we implemented our prototype we had to make certain decisions. However, these were

only design decisions, since the generic nature of our approach means that other layer

components could have been chosen.

92

Chapter Three

3 Wide-Area Middleware Proposal

3.1 Introduction

This chapter describes our whole Wide-Area Middleware proposal. As we have stated

above, our aim is to provide two complementary middleware layers, consisting of a

wide-area remote object layer, and the naturally resulting wide-area distributed reusable

component layer. Both these layers are built on top of the three main pillars described in

the previous chapter. Therefore, access to lower-level layers is abstracted and made

transparent to the application developer.

As seen in the architectural diagram (Figure 3.1), both layers sit on top of the same

common building blocks, and the order in which they are placed determines the

programming complexity. Therefore, the higher the layer is, the greater the abstraction

of the application programmer.

These layers and their associated services are the most important contributions of this

thesis. All these contributions will be discussed in greater detail throughout this chapter.

However, we now enumerate them briefly below:

 Definition of a Wide-Area Event-Based Remote Object Middleware, which

provides the typical remote object services, and the following:

 Definition of a new set of remote object invocation abstractions. Our

remote-object middleware provides the traditionally existing object-to-

object (one-to-one) remote method invocations. Moreover, it provides

object-to-objects (one-to-many) calls by using a wide area application-

level multicast communications bus. If this underlying information bus

also provides us with network proximity-aware primitives like anycast,

we can also provide the anycall and manycall abstractions. Such remote

3.1 INTRODUCTION 93

method invocation techniques allow a method to be invoked on one of

the nearest objects which comply with a parameterized condition.

Moreover, hopped calls allow for fault tolerance when methods are

invoked on dead objects: if another live replica of the object exists, it

responds to the call. It is important to recall that such invocation

abstractions aim to be generic in the sense that they are not closely

coupled to a specific underlying information bus or routing substrate.

Therefore, the underlying layers can be switched by others with the same

functionalities, although the same interfaces must be respected.

Figure 3.1. Our proposed Wide-Area Middleware Architecture

Wide-Area distributed applications are built on top of our middleware using the component layer.

 Definition of a decentralized object location service. This service

allows remote objects / components / applications to be located and

inserted into our decentralized generic model. It is similar to any naming

service, but proves a fault tolerant and scalable level of indirection. Any

object data can be stored and located later by using simple bind() and

lookup() primitive operations. One of the major advantages of this

service is that it is inherent to the key-based routing substrate we use. As

a consequence, it is generic enough to allow underlying layer switching

Message Routing Substrate Layer

Persistence Service
Layer

Application-Level Multicast
Layer

Wide-Area Remote Object Layer

Wide-Area Distributed Component Layer

Wide-Area Applications

Wide-Area
Middleware

Layer

94 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

by another different substrate, although it is required to follow the same

contract.

This service is closely related to the decentralized persistent layer of our

model. Any data to be stored in a persistent way can be recorded in a

decentralized way, as happens with object or component handles. In

order to support fault tolerance, data is replicated among a specified

number of nodes. A set of algorithms is used to take care of bottlenecks

and node overwhelming.

 Distributed interception service. By means of the underlying

information bus, we provide primitives that can easily intercept remote

object calls, in a similar way to Aspect Oriented Programming (AOP)

techniques. Therefore, invocations to remote objects can be captured,

analyzed, transformed, and even discarded. This service provides

runtime interception with no need to change either the source or the

target object code. Type-compatible interceptors are therefore added or

removed in runtime by calling our model‘s interception service. This

approach, for example, is used for monitoring and for providing load

balancing to our objects or components.

 Wide-area load balancing through interceptors or the anycall

abstraction. Two contributions that provide load balancing in wide-area

distributed objects and components are described. Both these alternatives

gracefully fit into our proposed generic middleware framework for

global distributed application development. Basically, these two load

balancing techniques target different domain areas. For those scenarios

in which each object is aware of its own load, the anycall-based scheme

selects the target object by letting each target node decide. This approach

is rather stateless, and provides proximity aware support. The alternative

scheme lets an interceptor know the state of each of the objects to be

load balanced. Requests are directed to the interceptor which forwards

the invocations to the less loaded object server (and defining which load

policy is to be taken into account).

Both schemes are complementary and target different use cases,

providing the load balancing requirement with enough genericity and

flexibility.

 Definition of a Wide-Area Distributed Reusable Component Middleware,

which provides the most common services of these solutions, plus:

 A decentralized lightweight container model. There is a transition

from remote objects to distributed components, in such a way that

application developers are provided with a higher level of abstraction.

Therefore, we define a component-based reusable layer, which presents

an alternative way of holding any component‘s life cycle routines.

Distributed components are modelled as remote objects, including a life

cycle service, and a decentralized deployment and location service.

Instead of having a monolithic heavyweight container housing all

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 95

components, we opt for letting each node that participates in the

worldwide network be a lightweight container. Therefore, we allow

components to be distributed throughout the network, and benefit from

the underlying services provided by the remote object layer.

All these innovative contributions allow for an efficient, scalable, fault-tolerant, and

decentralized middleware suitable for distributed wide-area application development.

This chapter is structured as follows: first we describe the main innovative contributions

of our wide-area remote object middleware, and then we go on to describe our wide-

area reusable component infrastructure built on top. Each of these sections includes

an overview of their respective prototype implementations, called Dermi and p2pCM

respectively, as well as extensive simulations and empirical evaluations.

3.2 The Wide-Area Remote Object Middleware Layer

The first element of our middleware proposal provides the main foundations for the

development of wide-area distributed applications. Even though applications can easily

be developed on top of these objects, the idea was to provide a higher level abstraction

layer (the component layer) that used this remote object layer in order to make the

development of these applications even more straightforward. Therefore, we used a

well-known programming paradigm: distributed reusable components.

In this section we are going to describe the object middleware layer, and its innovative

services. The idea behind a remote object middleware is to create distributed objects

which can efficiently communicate through the network. These objects are expected to

be created, reused, invoked, destroyed, etc. by other objects. Communication between

objects is to be performed using the routing substrate or the event service (if one-to-

many or anycast communication is involved).

Exceptions have to be dealt with in a distributed manner. Therefore, if a remote object is

invoked and an exception occurs, this should be propagated back to the caller object so

that it can be handled.

Remote object middleware solutions provide many services which are inherent to

distributed object technology. These include a naming service, synchronous and

asynchronous invocations, object replication, inheritance, pass-by value, pass-by-

reference, and many others.

We wanted our wide-area remote object middleware to provide all these services to the

upper-level layers, and also other innovative services which could benefit from the

decentralized nature of the underlying substrate, and provide interesting features

targeted to the wide-area domain.

The rest of this section is structured as follows: first we describe the innovative services

offered by the remote object middleware layer. Later we go on to describe the rest of the

common services provided by this layer, and the adaptations so that it can work in a

decentralized environment. Finally, we present our remote object middleware‘s

96 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

prototype implementation Dermi, and we validate our approach with an extensive set of

simulations and empirical evaluations.

3.2.1 Innovative Services

Using the decoupled nature of the underlying event infrastructure, we created several

innovative services that our remote object middleware provides to the application layer.

Our approach includes object mobility, replication, caching and discovery services.

However in this section we concentrate on the most innovative ones: p2p call

abstractions, decentralized object location, and distributed interception.

3.2.1.1 p2p Call Abstractions

Figure 3.2 shows all of our remote object middleware‘s call abstractions. We divided

them into two groups: one-to-one and one-to-many.

Figure 3.2. Our Remote Object Middleware’s p2p call abstractions

(a) One-to-one calls involve only two entities: server and client. (b) One-to-many calls involve many

entities: multiple servers and one client, or vice versa.

One-to-one calls. One-to-one calls can be synchronous or asynchronous, depending on

whether a client wishes to block their execution until a result returns. One-to-one calls

do not use the event service, which fits more effectively into one-to-many calls. In one-

to-one direct calls, an object client (stub) sends a message directly to an object server

(skeleton). To accomplish this, we have a direct mapping between the object and the

physical network node in which it runs. Therefore, we use the server‘s NodeHandle, an

object that represents the node‘s address and port number. Thus, we achieve a direct

peer communication between both end objects. The results are returned the same way,

producing a very efficient call that involves only two hops: one for the call and one for

the returned results. In order to withstand all possible cases, any implementation of one-

to-one calls must fully support direct synchronous calls, and asynchronous calls.

 One-to-one direct calls present several challenges because they are not tolerant

to failures: when the server on which we wish to invoke methods goes down, it

ceases to serve our requests. We solve this problem using NodeIds (an alias for

DOLR
Layer

One-to-One

Direct Hopped

Synchronous

Asynchronous

Synchronous

Asynchronous
DOLR
Layer

One-to-Many

Multicall Anycall

Synchronous

Asynchronous

Manycall

Sequential Parallel

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 97

the physical node in which the object runs) instead of NodeHandles (IP

address), but this approach incurs additional overhead because a message routed

to any given object might have to move through O(log n) (where n is the total

number of nodes in the system) nodes before reaching its destination (this is

applicable to any of the structured p2p overlay routing protocols described in

the previous chapter. If another substrate is used, this number can be higher or

lower). This philosophy is in opposition to that of direct calls, in which a

message moves directly from source to destination.

 Using the routing substrate‘s key-based routing capabilities is the foundation for

what we call one-to-one hopped calls. The advantage of using the NodeId to

route messages to the server is that we can use any existing replication

mechanism, thus providing some failure tolerance. When the server we are using

goes down, the message is automatically routed to another server from the

replica group, in a process transparent to the client, which continues to use the

same NodeId to route messages. Hopped calls are not as efficient as direct calls,

but they provide some fault tolerance.

One-to-many calls. Such calls are modelled using the event service layer by means of

disseminating notifications. We only use the application-level multicast layer in these

calls.

 The multicall abstraction is a remote invocation from one client to many servers

or from one server to many clients (for example, to propagate state information).

Multicalls can be synchronous or asynchronous and are modeled as one-to-many

notifications. All clients subscribe to the same topic identifier (objectUID +

MethodID) and the object server publishes events matching that subscription. As

client numbers increase, this approach scales better than having point-to-point

connections to any interested client. The approach also achieves transparency

from clients to services — clients don‘t need to know the locations of all servers

that provide a service. When we designed our system, we wanted to stay close to

the chosen programming language. Thus, runtime stubs and skeletons are

embedded. The stub code creates the appropriate subscription, decoupling the

object server from clients.

98 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

Figure 3.3. Multicall abstraction

Object at node n0 sends a multicall headed towards the subscribers group root (labelled R). The call event

is efficiently disseminated by the application-level multicast layer to all subscriber clients.

 Anycall is a new form of remote procedure call that benefits from network

locality. If the application-level multicast layer provides us with an efficient

anycast primitive, we use it to create a call to the objects that belong to the same

multicast group (object replicas that can provide us with a service, for example).

The anycall client is insensitive to which group object provides data; it only

wants its request to be served. The idea is to iterate the multicast tree, starting

from the closest member in the network. Once a member of the tree is found to

satisfy the condition, it returns an affirmative result. If no group members are

found to satisfy the anycall condition, a remote exception is returned to the

caller.

To illustrate the behavior of the anycall abstraction, consider how we might

implement a CPU intensive application like SETI@home [41] or the United

Devices Cancer Research Project [23] using our remote object middleware.

These applications retrieve data units from servers, analyze them on home or

office PCs, and return the results to the servers. Our anycall abstraction can

provide a simple alternative to the data-unit retrieval process. Imagine, for

instance, that we have several servers with available data units (see Figure 3.4).

We can create a multicast group under the topic AVAIL_DATA_UNITS, which

includes an identifier equal to hash (“AVAIL_DATA_UNITS”). When a client

node wants to get a data unit, it executes DataUnit du = anycall

(“AVAIL_DATA_UNITS”, getDataUnit) to trigger an anycast message to the group;

in response, the nearest group member checks whether it has any data units

available. If it has, the group member returns the data unit to the client and the

anycast message routes no further. If it has not, the anycast message is routed to

another group member and so on, until a data unit is found or the message

reaches the root, which means that none of the group members have available

data units. This result throws an exception back to the client to provide proper

notification.

n0 - skeleton

n1 - stub

n5 - stub

R

n2 - stub

n3 - stub

n4 - stub

n6 - stub

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 99

Figure 3.4. Anycall example

Client C anycalls to the AVAIL_DATA_UNITS group, reaching n2 first, which has no available data

units to serve. The multicast tree is iterated (n4 → n3) until n3

 A manycall is a variation of the anycall abstraction. It takes advantage of the

manycast primitive of the application-level multicast layer and it therefore sends

a manycast message to several group members, continuing to route until it finds

enough members to satisfy a global condition. Like anycall, when an object (in

the multicast tree) receives a manycall message, it first checks whether the

object satisfies a local condition and, subsequently, checks whether a global

condition (passed along with the message) is met. The manycall is successful

when the global condition is met. To better understand the manycall abstraction,

imagine a massive online voting scenario in which we need a minimum of x

votes to do a certain job. We can send a manycall to the group so that each

member can vote yes or no, according to its local condition (to approve the

execution of a certain simulation, for example). After checking this local

condition (voting yes or no), the object checks the global condition (have x votes

been reached?). If they have, the voting process concludes successfully,

communicating the result to the manycall initiator. If the global condition has

not been reached, (the minimum number of votes x is not reached after iterating

throughout the multicast server tree), the unfavorable result is passed to the

client.

From the usability point of view, developers can easily label any remote object‘s

methods with its type (multicall, anycall, manycall, ...), by using annotations on the

remote object‘s interface definition. An example is shown in Figure 3.5. More

information can be found in Annex A.

100 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

/**

 * This is the interface for the Seti anycall demo object

 * @author Carles Pairot <carles.pairot@urv.net>

 * @version 1.2

 */

@DermiRemoteInterface

public interface Seti extends ERemote {

 // Method signature for the anycall method pair must be the same,

 // except for the return result, which needs to be boolean for the

 // condition method

 /**

 * This method returns data unit from one of the client's nearest server

 * @param system String Example parameter

 * @throws RemoteException If something goes wrong ;-)

 * @return String Data unit returned

 */

 @RemoteMethod (granularity = Granularity.ANYCALL)

 public String getDataUnit (String system) throws RemoteException;

 /**

 * This method is automatically called by the skeleton to check whether

 * the condition can be satisfied for each server

 * @param system String Example parameter

 * @throws RemoteException If something goes wrong ;-)

 * @return boolean true if condition satisfied (the server has

 * available data units)

 */

 @RemoteMethod (granularity = Granularity.ANYCALL_CONDITION)

 public boolean getDataUnitCondition (String system)

 throws RemoteException;

}

Figure 3.5. Definition of anycall methods in a remote object's interface

3.2.1.2 Decentralized Object Location Service

A scalable, stable, and fault-tolerant decentralized object-location service is needed to

locate object references in wide-area environments. A centralized naming service could

be a bottleneck for such a common task. We used the underlying persistence layer

facilities to build our object-location service. For our prototype implementation

(Dermi), we used a structured DHT, even though other algorithms could be used.

However, other unstructured p2p networks, such as those based on Gnutella-like

protocols, use flooding techniques, which do not guarantee deterministic resource

location. By using a DHT-based approach to build our object-location service, we

guarantee that a resource stored on the network will be found in at most O(log n)

network hops — a stark contrast with the probabilism of unstructured p2p overlays.

Our p2p location service stores object-location information that can be used to find

objects via human-readable names. As in other wide-area location services, our object

names do not contain any embedded object‘s location information to decouple their

current location from their name. That is, an object‘s name is independent of its

location. We adopted a uniform resource identifier (URI)-style naming convention for

objects (for example, p2p://cat/urv/etse/deim/Simple). Although we permit URI

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 101

hierarchies that uniquely represent our objects, we use a secure hash algorithm (SHA-1)

to hash this key and insert it into the DHT.

The process of inserting and looking up an object handle is shown in Figure 3.6:

 A specified node n0 instantiates an object locally and inserts its handle into the

decentralized object registry. To do so, it hashes the object‘s identifier name,

and obtains an id which automatically maps to the node whose identifier is

closest to the id. In the figure, this is node n1.

 Once the object‘s handle has been inserted, we suppose that somebody else may

wish to look up this object and invoke methods on it. Since we do not know its

exact location, but we know its identifier name, we query the location service on

n2, and obtain the same id as before by hashing the object‘s name. Therefore, our

request is redirected to n1, which returns a handle to the object that is running on

n0.

 At this point, we can call the object‘s methods.

Naturally, if the node containing the object‘s location information fails, object lookups

will fail as well, as the node that contains this information is missing. To avoid this

problem, data replication mechanisms are used at the DHT tier. When an object handle

is to be inserted, this is replicated among the k nearest nodes to the target node. This

way, should the target node fail, information is not lost and the object‘s handle can be

recovered from any of the k nearest nodes.

Another more efficient approach for wide-area scalable object location is to use a

hierarchical system such as the Globe Location Service [114]. Globe objects are located

by means of a dynamic adapting worldwide search tree. This approach is normally more

efficient than the one presented here, because in most cases, any object can be located

with only 2 network hops. However, if we used this system, our middleware would

depend on an external hierarchical service for object location, which could be

cumbersome if for some reason it becomes unavailable. Moreover, by using our system,

we make better use of the Internet‘s infrastructure by using the resources at its edges, as

we require.

Nevertheless, it is interesting to note that both systems can be used for our middleware.

Globe‘s hierarchical search tree approach could be used for the sake of efficiency.

However, if we prefer not to depend on an external location service, and make good use

of the resources available at the edges of the Internet, our decentralized p2p object

location system distributes object handles more sparsely and does not involve any

hierarchies.

Our decentralized location service handles duplicates as well, throwing an exception if

someone wishes to rebind an already bound object without unbinding it beforehand.

102 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

Figure 3.6. Example of object handle insertion and location

(1) Node n0 creates an object locally and inserts its handle in n1, which is obtained by hashing the object‘s

name (/simple). (2) Node n2 wishes to get the object‘s handle, hashes its name (/simple), and queries n1

for the object‘s lookup data, which is returned. (3) Now n2 can call the object‘s methods.

From the usability point of view, object insertion and looking up follows the same

methodology found in traditional naming services (Figure 3.7).

...

// Load Dermi’s connection properties

Properties env = Registry.getEnvironment ("dermi-config.xml");

// Create remote object (the first time)

SimpleImpl server = new SimpleImpl (env);

// We can use the object now

server.setAge ("29");

// Now that the object is created, we can bind in on the DOLR

Registry.bind ("p2p://simple_dermi_object", server);

...

// Look up an object in the registry

Simple client = (Simple) Registry.lookup ("p2p://simple_dermi_object");

// Execute remote object's methods

client.setAge ("30");

...

Figure 3.7. Binding and looking up an object from the decentralized object location service

n2

2

1

n0

n1
3

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 103

3.2.1.3 Distributed Interception

Distributed interception enables concepts from connection oriented programming to be

applied in a distributed setting. We can use this service to reconnect and locate type-

compatible interceptors at runtime in a distributed application. For our application-level

multicast layer to support this feature, its classes are very likely to be extended. Thus,

we do not need to change the interceptor skeleton or the intercepted remote-object

subscriptions each time an interceptor is added or removed. Distributed interception can

be a very useful mechanism in dynamic aspect-oriented programming (AOP)

environments.

In our prototype implementation (see Figure 3.8), our interceptor implementation takes

advantage of the fact that all events sent to a multicast group in the event service layer

(Scribe) first route to the group‘s rendezvous point. Each group‘s rendezvous point

contains a list of pointers to other interceptor objects, which update every time an

interceptor is added or removed. As a consequence, each time an event is sent to a

multicast group, this notification arrives first at its rendezvous point, which checks

whether it has interceptors. If there are no interceptors, the rendezvous node normally

sends the event to the multicast group itself. Otherwise, the event passes sequentially

throughout all the interceptors, which might transform it into a different event by

changing its information. Finally, the event will be routed back to the rendezvous point,

which will, in turn, send the intercepted event to the group members. We need a fault-

tolerance mechanism in case the rendezvous point changes because network nodes are

added or removed. Fortunately, the event service (Scribe) provides callbacks that notify

us about root node modifications. The simplest approach would be to move all

interceptor data from the old root to the new one, but this will not work if the root node

fails. In this case, we must replicate all interceptor data among k nodes nearest the

rendezvous point. To do this, we use our persistence layer.

Normally, there will be few interceptors because they are sequential and because

efficiency quickly decreases as the number of interceptors increases. Nevertheless, to

prevent this problem, and thus, reduce the number of network hops between

interceptors, we could opt to move them directly to their source objects, which would

allow events to be intercepted locally. This way, each time a publisher sends an event to

its subscribers, the publisher itself will do the interception process locally, thus

incrementing efficiency.

If this this interception mobility mechanism is used, distributed interception is also

supported in direct synchronous calls. Notice that it is not possible to use interception

mechanisms in direct synchronous calls because these calls do not use the application-

level multicast service. Therefore, there is no rendez-vous point where interceptor

pointers can be stored.

Distributed interception is difficult to implement in strongly coupled object systems, in

which clients and servers must be notified of object changes. When a TCP connection is

established among many clients and an object server, the insertion of a remote

interceptor means that all clients should reconnect to the new interceptor and bind it to

the remote server. Our solution does not affect client connections, which are represented

as invariant subscriptions.

104 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

It is clear that one of the most important drawbacks of the distributed interception

feature is its need to be natively implemented at the application-level multicast layer,

since some upcalls need to be captured and explicitly handled. However, we plan to

improve this feature by means of AOP-like features. The idea is that each node runs an

AOP-aware virtual machine, in which we can deploy runtime aspects which would act

as pointcuts and perform the distributed interception. This issue is currently being

investigated.

Figure 3.8. Distributed interception algorithm

The object at n0 sends an event to the group rooted at R. This event is sent to the interceptor queue

sequentially, thus transforming it (evt → evt‘ → evt‘‘). Finally the event is sent back to the root, which

ends up delivering it to group subscribers.

From the developer‘s perspective, distributed interception objects can be appended /

removed in runtime by means of the naming service itself (see Figure 3.9).

...

// Load the registry first

Registry.loadRegistry ("dermi-config.xml");

// Look up the Simple object in the registry

Simple obj = (Simple) Registry.lookup ("p2p://simple_dermi_object");

// Instantiate and bind the interceptor object with the Simple object

LogInterceptorImpl server = (LogInterceptorImpl) Registry.loadInterceptor (

"dermi.samples.interception.LogInterceptorImpl", obj);

// The interceptor is loaded. All calls done to the Simple object will

// automatically traverse our interceptor now

...

Figure 3.9. Binding an interceptor to an already running object

The loadInterceptor() method allows dynamic interceptor binding.

I2

R

I1
n0

n1
n2

evt

evt

evt'

evt’’

evt’’ evt’’

1

2

3

4

5 6

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 105

3.2.1.4 Load Balancing Service

Load balancing can be defined as distributing processing and communication activity

evenly across a computer network so that no single device is overwhelmed. Load

balancing is especially important for networks in which it is difficult to predict the

number of requests that will be issued to a server. For instance, busy web sites typically

employ two or more web servers in a load balancing scheme. If one server starts to get

swamped, requests are forwarded to another server with more capacity.

In distributed objects technology, the problem is the same: a resource which provides a

service can become overwhelmed by many clients. In this case, the resource is clearly a

centralized hot spot, and becomes a single point of failure. To avoid such hot spots, the

object server is replicated Nevertheless, this is not the solution if the replica to be

chosen depends on the current load. Therefore, as well as having multiple replicas of the

same service, we need a mechanism to choose one or another according to certain

parameters which may include server load or network bandwidth, to name the most

common ones.

As an example, we can imagine a service like a video broadcast. If we expect our video

server to be joined by a considerable number of clients, we should consider replicating

it. However, this does not solve the problem. We require a mechanism to decide which

replica is to be assigned to each client that connects to our video broadcast service. This

mechanism should take certain criteria into account (in this case, network bandwidth, or

server‘s node stress). Naturally, this assignment process must be made transparent to the

client.

Having described the problem, and bearing in mind the services provided by our remote

object middleware, we present two different load balancing algorithms which can be

used in wide-area environments. Before describing them both, we outline the

background they share.

Firstly our object server must be replicated among other nodes. Notice that our remote

object middleware provides us with mechanisms to do this, which are transparent to the

developer (this replication service is described in next section). This ensures that we

have all the replicas required in one multicast group, and that any changes within the

object server will be easily propagated to their replicas by sending event messages to the

group (which will be received by all members). Once all the object server‘s replicas

have been joined into one multicast group, we can opt for two load balancing options:

decentralized load balancing management and interceptor-based load balancing

management.

3.2.1.4.1 Decentralized load balancing management

Decentralized load balancing management uses the anycall primitive for load

balancing purposes. The working principle for this methodology is totally decentralized,

meaning that there is no centralized authority that knows the load of each replica.

106 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

Instead, we will efficiently ask for the client‘s nearest replica to serve our request. If the

replica feels it is not overwhelmed, it will serve us. If it feels that it is, it will answer

that our request cannot be served. In the latter case, and by following the anycall

behaviour, another object replica will be contacted and so on.

One scenario in which this load balancing scheme fits very well is in a distributed

simulation of some kind. Imagine we have a group of servers waiting for data chunks to

analyze. These chunks can be provided by using the anycall approach: the chunk is

delivered to the closest server, which checks if it has already reached its maximum

number of concurrent data chunks to be analyzed. If this is the case, it delegates

processing to another server, and so on; otherwise it starts the chunk analysis. A

diagram showing this process can be seen in Figure 3.10.

Notice this load balancing system is only valid for nodes that do not suffer network

congestion. If nodes themselves become overloaded by network messages, they get

saturated and will not be able to respond to our anycalls. This prevents our decentralized

load balancing mechanism from working properly.

3.2.1.4.2 Interceptor-based load balancing management

To deal with possible network congested nodes, we have another way of balancing the

load: interceptor-based load balancing management. In this case, we make use of the

distributed interception mechanism. There is a special interceptor node, which will be

aware of each server replica load. This idea is similar to the agent concept found in

NetSolve [62]. Particularly, we add an interceptor object to the multicast group of the

object server‘s replicas. This means that when any client wishes to call a server‘s

method, the call will be transformed into an event that will be sent to the multicast

group itself, and automatically intercepted by the distributed interceptor.

The interceptor will, in turn, be aware of the load of each replica and make a direct call

to the replica whose load is sufficient to solve the client‘s request. All object replicas

will periodically inform the interceptor about their possible congestion state, by sending

special events to the group. These events will be captured and stored by the interceptor

itself, thus making it aware of the overall replica status. Notice the interceptor will in

fact know about each replica‘s capacity for serving requests, and will decide which will

serve the current client‘s RPC. Naturally, this approach can make the interceptor itself a

single point of failure: if the interceptor node fails, load balancing fails as well. We can

use replication mechanisms for the interceptor itself, and assure correct load balancing

even if it fails.

Clearly, if any of the replicas gets overloaded by network messages, the interceptor is

aware so no more messages are routed to that node. Notice that in this case, load

balancing continues to work properly, in contrast to the problem we have explained in

the decentralized alternative. However, in this case, we have a single entity which

controls the whole load balancing process. If we wish to distribute this task among all

servers, we should use the first approach (decentralized).

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 107

One scenario in which this kind of load balancing scheme proves to be useful is the

video broadcast example explained above. The broadcast of a video stream can

overwhelm a server node‘s network adapter, which will therefore be unable to respond

to anycalls (if we use the decentralized load balancing system). Nevertheless, if we use

the interceptor approach, the interceptor itself knows the state of all available servers

and tells the client the most appropriate one for connection. A scheme of this procedure

is shown in Figure 3.10.

Figure 3.10. Example of a decentralized and interceptor-based load balancing scheme

3.2.2 Additional Services

Our wide-area remote object middleware needs to provide additional services which are

already found in other remote object middleware solutions like RMI [47]. These include

dynamic class loading, remote exception handling, remote inheritance support, remote

listeners support, pass by reference, and others. All of them have been implemented in

our proof-of-concept.

However, we also aim to provide other services which benefit from the underlying

network substrate and its inherent services: application-level multicast, persistence, and

routing layers. We briefly describe these services to show how they can be implemented

on top of a decentralized infrastructure:

 Object mobility refers to the possibility of moving object servers to different

locations and continuing to handle client requests. Object mobility can be easily

accomplished in our remote object middleware by simply serializing the object‘s

implementation to the remote endpoint. Before serialization, the skeleton

removes all its subscriptions from the event service and, upon arrival at the

remote endpoint, the skeleton reconnects to the event service and creates the

subscriptions in the new location. Object clients (stubs) remain unaware of these

changes since their current subscriptions are unaffected.

In traditional object middleware, the strong coupling between clients and servers

through TCP connections requires that all clients be notified so that they can

reconnect to the new server location or use ad-hoc remote proxies instead. The

anycall (objectMethod)

objectMethod’s result returned

call (objectMethod) R

objectMethod’s result returned

n0

n1

n2

n3

n4

C C
I0

n1

n2

n3

108 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

first solution does not scale for a high number of clients and the second one is

only an ad-hoc façade not suitable for unexpected scenarios. Our decoupled

approach permits flexible object mobility and it can be used in different settings

like server load balancing, spontaneous systems, agent systems and for highly

dynamic and manageable remote services.

 Object discovery consists of using predefined Object UIDs to locate remote

objects in an event bus. In this case, clients locate object servers with Ids

associated to the object subscription. Object discovery is an extremely useful

functionality in highly dynamic spontaneous scenarios such as wireless or

mobile networks.

Object discovery is usually solved in existing systems by means of the so called

lookup services. The Jini [48] lookup service uses UDP broadcast to

automatically discover services in the local environment. In fact, this is a nice

solution that involves a one-to-many channel like UDP broadcast. Although it is

a good solution in local area networks, it is not appropriate for remote endpoints,

where UDP multicast or broadcast are not available. In these situations, using

the decentralized event service layer would make the lookup service really

accessible to remote locations.

 Object replication is an added functionality derived from the flexibility of the

event bus. Objects are replicated by generating special stubs through the event

system in order to maintain consistency and data among the remote object

replicas. There is no central object server, so any of the clients can fail and we

want the object‘s state to be preserved. Our approach is to have all replicas join a

multicast group. When an object wishes to call a method from a replicated

object, the stub sends the call to the group as a special anycall. This means that

any of the object replicas (normally the nearest one) can respond to the call,

which makes replication totally transparent to the user.

3.2.3 Proof-of-Concept Implementation: Dermi

As we have already mentioned, structured p2p overlay networks are an efficient,

scalable, fault-resilient, and self organizing substrate for building distributed

applications. This kind of network provides such interesting services as distributed hash

tables (DHTs), decentralized object-location and routing facilities (DOLR), and scalable

group multicast–anycast (CAST). These layers provide upper-level applications with an

abstraction layer so that these services can be accessed transparently. For example, the

DHT abstraction provides the same functionality as a hash table — associating key-

value mapping with physical network nodes rather than hash buckets, like traditional

hash tables. The standard put(key, value) and get(key) interface is the entry

point for any application using the DHT.

All the functionalitites provided by these networks perfectly match the requirements of

our entire model proposal: a routing layer, which corresponds to the key-based routing

layer (KBR), which routes messages towards nodes according to a hash of the message

key; an application-level multicast layer, which is responsible for providing wide-area

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 109

event dissemination to multiple group members; and finally a persistence layer which is

implemented as a DHT, thus storing key-value pairs.

Inspired by several applications that emerged as a result of these structured p2p

substrates — including wide-area storage systems such as CFS [70] and PAST [73],

event notification services such as Bayeux [118] and Scribe [66], and even collaborative

spam filtering systems such as SpamWatch [44] — we developed the Decentralized

Event Remote Method Invocation (Dermi) wide-area remote object middleware.

Bearing in mind all the requirements and the already existing functionalities provided

by structured p2p overlay networks, we decided it would be appropriate to implement

our remote object middleware‘s prototype on top of this core substrate.

Dermi is built on top of a decentralized KBR p2p overlay network. It benefits from the

underlying services provided by the p2p layer. Dermi uses the PAST or the Bunshin

object-replication and caching system. Our system models method calls as events and

subscriptions using the API provided by the CAST abstraction (which models a wide-

area event service). The implementation of Dermi is currently available at our Web site

[http://dermi.sourceforge.net].

Dermi uses Pastry as its structured routing substrate (KBR) and Scribe, a large-scale

decentralized application-level multicast infrastructure built on top of Pastry, as its

publish–subscribe message-oriented middleware (CAST). We chose Scribe because it

provides a more efficient group-joining mechanism than other existing solutions, and it

also includes multisource support. Additionally, our preferred KBR substrate choice

was Pastry because its routing scheme is efficient, it takes account locality when routing

messages, it is self-organizing and can gracefully adapt to node failures. All this makes

Pastry one of the most interesting KBR implementations. Moreover the availability of a

Java implementation at the time this thesis was begun, eased the adoption process.

However, we could have used any other p2p KBR-based overlay network (or even none

of them), provided that they share the same basic functionalities.

Dermi was strongly inspired by the Java RMI object middleware, which lets developers

create distributed Java-to-Java applications in which remote Java object methods can be

invoked from other Java virtual machines. It also uses object serialization to marshal

and unmarshal parameters and does not truncate types, thus supporting true object-

oriented polymorphism. Following this model, Dermi provides a dermi.Remote

interface, a dermi.RemoteException class, and a dermi.Naming class to locate objects

in our decentralized registry.

http://dermi.sourceforge.net/

110 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

Figure 3.11. Dermi architecture diagram and how it fits within the Common API for Structured

Overlays

Note that the KBR layer is the Routing Layer, the DHT and DOLR layers represent the Persistence

Layer, and the CAST layer corresponds to the Application-Level Multicast Layer, as defined in our

generic framework proposal requirements.

Early releases of our system included dermic, a tool that automatically generated stubs

and skeletons for our remote objects. However, recent versions adopted Java 1.5‘s

annotation mechanism and transparent dynamic proxies in order to avoid this process of

stub and skeleton generation, since these are embedded in runtime. Together, these

transparently manage object publications — subscriptions and their inherent

notifications. Further, Dermi currently provides many other features found in Java RMI,

such as remote exception handling, pass by value and by reference, and dynamic class

loading.

Dermi also contains a communication layer between the stubs and skeletons — an

important difference from RMI. In conventional RMI, a TCP socket is established

between the caller (stub) and the callee (skeleton). Dermi stubs and skeletons use the

underlying event service by making subscriptions and sending notifications to

communicate the method calls and their results.

Figure 3.11 shows Dermi‘s architecture and how it maps onto the Common API [72]

described before. As we can see, Dermi uses Scribe as its application-level

multicast/anycast service, and PAST or Bunshin as its persistent DHT layer. Dermi can

use the DHT directly as well (when no strict persistence is required). In addition, the

DOLR layer is also used as its naming service. Note that the KBR layer is the Routing

Layer, the DHT and DOLR layers represent the Persistence Layer, and finally the

CAST layer corresponds to the Application-Level Multicast Layer, as they were

defined as core requirements for our generic wide-area middleware proposal.

Key Based Routing Layer (KBR)

DHT CAST DOLR

PAST/
Bunshin

Scribe

Dermi

Tier 2

Tier 1

Tier 0

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 111

Notice however that this purely p2p approach also has drawbacks. One of them is how

to perform the bootstrapping process: how can we find a contact node in the overlay to

join? At this point, there are several approaches: for example, JxTA‘s Rendezvous point

[39], Gnutella‘s Host-Cache [21] system or KaZaA‘s [42] indexing servers. One

approach that can be applied to Dermi is the idea of a universal ring [65] expected to be

joined by all participating nodes. Another drawback is that p2p overlays are not secure;

even a small fraction of malicious nodes can prevent correct message delivery

throughout the overlay. Techniques such as the ones described in [65] can be used to

prevent some security attacks.

For further details on Dermi‘s implementation and API, see the annexes. We now go on

to describe some issues about churn and failure handling in Dermi, and to explain the

validation tests conducted on our prototype implementation.

3.2.3.1 Churn and Failure Handling

Nowadays, DHTs are a hot, ongoing research topic. One research area is churn, the

continuous process of node arrival and departure. Researchers have demonstrated that

existing DHT implementations can break down at the churn levels observed in deployed

p2p systems [104], contrary to simulation-based results. Even though this is a hot

research topic, we find the Bamboo approach very promising. As already described in

Chapter 2, Bamboo is a new DHT that easily accommodates large membership changes

in the structure as well as continuous churn in membership. Bamboo‘s authors say that

it handles high levels of churn and that its lookup performance is similar to that of

Pastry in simulated networks without churn.

Dermi partially addresses churn by controlling rendezvous-point changes. The node

whose identifier is closest to the group‘s topic identifier is chosen to be the root (or

rendezvous point) of a Scribe multicast group. When new nodes join or leave our DHT,

another node identifier might then become closer to the group‘s topic identifier than its

previous root. This means that every time a message is sent to the group, it will go to

the new root rather than the old one. This can cause some events to be lost while a

rendezvous-point change is in progress. Scribe notifies Dermi about these root changes

via upcalls, and a buffering algorithm forwards lost events to the new root.

Dermi handles server failures in several ways. One is via the anycall abstraction.

Consider, for example, an environment in which several servers offer the same service.

When clients issue an anycall to this server group using Scribe‘s anycast primitive, each

client should be directed toward its closest server replica. If any of these servers were to

fail, however, the client would continue to be served, but by another server in the group.

Thus, the only visible effect on the client side would be a slightly longer response time

because it would no longer be served by its closest server. Another way to handle server

failures is via replication mechanisms. With our decentralized location service, we must

handle any possible node failures that can affect it. If a node that contains an object‘s

location information fails, that object‘s lookups will fail as well. To solve this, we use

data replication mechanisms, such as those provided transparently by the persistent

layer we use: Bunshin [95] or PAST [73].

112 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

When an object handle is to be inserted, Dermi replicates its data among the k nearest

nodes to the target node. When a target node fails, the object‘s handle can be recovered

from any of its k nearest nodes.

3.2.3.2 Validation

We validated Dermi‘s approach using experimental measurements and simulations. We

experimentally measured p2p call abstractions performance, as well as the decentralized

load balancing scheme. We empirically tested the distributed interception mechanism as

well as the load balancing scheme based on it.

3.2.3.2.1 Experimental measurements

We conducted several experiments to measure Dermi‘s viability using the PlanetLab

testbed [69]. PlanetLab is a globally distributed platform for developing, deploying, and

accessing planetary-scale network services. Any application deployed on it can

experience real Internet behavior, including latency and bandwidth unpredictability.

One of the things we measured was Dermi‘s call latency (how long it takes to perform a

call). We conducted the experiments using 20 nodes from the PlanetLab network,

located in a wide variety of geographical locations, including China, Italy, France,

Spain, Russia, Denmark, the UK, and the US. We repeatedly ran the tests at different

times of day to minimize the effect of momentary node congestion and failures. Before

each test, we estimated the average latency between nodes to gauge how much overhead

the middleware calls incurred.

3.2.3.2.1.1 Direct Synchronous Calls

The first test used one-to-one direct synchronous calls, which are achieved by

establishing a direct p2p communication between two objects. Each test used 300

random invocations (getter–setter methods) for each pair of object nodes. As expected,

this kind of invocation is the most efficient. The normalized incurred overhead is 1.27

(average call time/average latency), summarized in Table 3.1.

Object server node Object client node Average

latency

Average

call time

planetlab2.comet.columbia.edu planetlab1.diku.dk 116 149

planetlab2.comet.columbia.edu pl1.swri.org 60 90

pl2.6test.edu.cn planetlab2.di.unito.it 522 528

planet1.berkeley.intel-research.net planetlab5.lcs.mit.edu 84 116

planetlab1.atla.internet2.planet-lab.org planetlab2.sttl.internet2.planet-lab.org 62 73

Table 3.1. Performance of one-to-one direct synchronous calls

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 113

3.2.3.2.1.2 Synchronous Multicall

Next, we tested one-to-many synchronous multicall using a group of 10 servers and a

client invoking 300 setter methods on all of them. Table 3.2 shows the results. Because

it is a synchronous test, the client remains blocked until all servers return from the

invocation. Results show an average 463 ms call invocation. In an attempt to make a

better comparison of the first two test results, we conducted the same test, trying to

synchronously invoke each server sequentially (the client calls each server in sequence).

As we expected, performance degraded (1,536 ms), thus demonstrating multicall‘s

ability to achieve one-to-many calls using the event service. On average (and in this

case), multicalling is 3.32 times faster than sequential direct calls. This test

demonstrated the viability of the multicall abstraction. Apart from being inefficient at

using direct calls to simulate one-to-many calls, however, it is incorrect in terms of

design: the test demonstrates only that it is faster to multicall rather than to make n one-

to-one direct calls. The point is that it would also be conceptually incorrect for a client

to know the n servers (which, in theory, provide the same service). In fact, the client

will know the name of the service to invoke but not all the servers that provide that

service (which can be removed, added, and so on). A client knows the name of the

service to invoke, which is transparent on how many servers provide that service.

3.2.3.2.1.3 Anycall

To measure anycall performance, we used three nodes out of 20 that provided the same

service. A set of clients began invoking anycalls on these servers. Each server provided

clients with a standard data-unit set. When a server exhausted its data units, another

server from the same group took its place, and so on. For anycalls, the results showed an

average of 166 ms for the first server, 302 ms for the second, and 538 ms for the third.

These servers were chosen on the basis of proximity, so the server closest to the client

was first, followed by the second-closest and then the last. The overall overhead for

these calls was 1.46 (the normalized incurred overhead: average call time divided by

average call latency). Results are summarized in Table 3.3.

114 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

Multicalling from planetlab1.diku.dk to the 10

servers

Direct synchronous calling from

planetlab1.diku.dk to…

Average call

time

463,49

planetlab2.comet.columbia.edu 155.61

planetlab2.di.unito.it 71.52

planetlab5.lcs.mit.edu 248.05

planetlab6.lcs.mit.edu 280.26

planetlab1.inria.fr 94.60

planetlab2.nycm.internet2.planet-lab.org 141.66

planet03.csc.ncsu.edu 157.77

phys0bha-4a.chem.msu.ru 76.30

pl1.swri.org 202.53

planetlab2.ac.upc.es 107.75

Multicall aggregate time 463,49 Direct call aggregate time 1536.05

Table 3.2. Performance of one-to-many multicalls

3.2.3.2.1.4 Manycall

We tested the manycall sequential implementation under the same conditions as the

anycall tests: clients sent manycalls to a group of three servers. In this case, we used the

voting example described earlier. Each of the clients required an affirmative vote from

each of the three servers. Once this task had been done, the manycall returned. On

average, these invocations lasted 386 ms, producing an overhead of 1.68.

Anycalling from

planetlab1.diku.dk

Anycall response received from... Average latency Average call time

planetlab2.comet.columbia.edu 113.88 166.88

planet1.berkeley.intel-research.net 178.46 302.04

pl2.6test.edu.cn 393.67 538

Table 3.3. Performance of anycalls

3.2.3.2.1.5 Decentralized load balancing scheme

To measure decentralized load balancing performance in Dermi, we used three nodes

out of 20 which provided the same service. A set of clients began making RPC calls on

these servers (basically sending a CPU-intensive task). When a server could not accept

more jobs, another server from the same group took its place, and so on. The results

showed what we expected: the first jobs sent to the group were taken by the closest

server to the client (thus confirming the utilization of the anycall locality property).

When the object was overwhelmed with jobs, the responsibility fell back to the second

closest server, and so on. With 300 RPC invocations, the average call times were 173.22

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 115

ms for the first server (planetlab2.comet.columbia.edu), 298.33 ms for the second one

(planet1.berkeley.intel-research.net), and 546.03 ms for the last one (pl2.6test.edu.cn).

The origin client was located in planetlab1.diku.dk. The results shown in Table 3.4

demonstrate that the overhead incurred is acceptable, thus showing the viability of this

decentralized alternative. This experiment was quite analogous to the one performed

before when testing the anycall primitive, since the basis for the decentralized load

balancing scheme is the utilization of the anycall. The results obtained do not differ so

much between both experiments and this little difference is explained because

PlanetLab nodes run multiple experiments and this can cause significant variations

between different runs. However, this was not the case, since the experiment was

repeated several times for different lengths of time so that these effects were minimized.

Object client located at

planetlab1.diku.dk

Object server responding at… Average latency Average call time

planetlab2.comet.columbia.edu 113.88 173.22

planet1.berkeley.intel-research.net 178.46 298.33

pl2.6test.edu.cn 393.67 546.03

Table 3.4. Performance of the decentralized load balancing scheme

3.2.3.2.2 Simulation Results

For our simulations we focused primarily on Dermi‘s distributed interception capability

and its associated load-balancing mechanism: interceptor-based load balancing.

3.2.3.2.2.1 Distributed Interception

Figure 3.12 shows a simulation of Dermi‘s distributed interception mechanism. For the

sake of clarity, the figure displays data only for the messages delivered to the event

service‘s application layer. The configuration used an overlay network of 40,000 nodes

and a 20,000-node multicast group. We sent 20,000 notifications to the group and used

FreePastry‘s [40] local node simulation. We measured the interceptors‘ node stress,

which shows the number of messages received for such nodes. The first scenario

(Figure 3.12a) shows the group with an interceptor located at a node other than its root.

Results show the rendezvous-point node overhead: each message is sent twice to the

root (from the publisher to the root and from the interceptor to the root). We can

improve this scenario by making the rendezvous node and the interceptor the same node

(using Dermi‘s object-mobility service). In this case, global node stress is the same as if

there were no interceptor.

What happens when the interceptor node is overwhelmed with event processing (rather

than network load) ? Imagine transmitting a video stream to several groups of users, one

of which wants to receive it in a different video format. This is a very demanding task if

performed by the video publisher or by each affected group member. One alternative is

to use an interceptor to do the data-conversion and deliver it to the group that wants it.

Even so, the multicast group‘s root node can be overwhelmed with CPU processing if

the interceptor and root coincide in the same node. As Figure 3.12b illustrates, we might

delegate such demanding processing to specialized interceptor nodes that produce more

116 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

network node stress on the root; this would free the root from collapsing due to event

processing. In this scenario, the root node selects four equivalent interceptors in a

round-robin policy. In real life, this illustrative case can be extended to reduce the

interceptor‘s network and CPU stress. A root node‘s stress increases with the number of

remote interceptors, which has the counter effect of relieving the root from unnecessary

CPU processing. (Although the rendezvous node can be a relatively CPU-weak node,

we selected powerful CPU nodes).

As part of the test, we simulated random failures in these four interceptor nodes using

an ad-hoc recovery-mechanism policy that restarted new interceptors when the number

of live ones decreased to one. (We can modify this policy to respawn new interceptors

when other conditions are met, but for clearer simulation results, we opted for our

default condition.) As each interceptor fails, the node stress for the remaining ones

noticeably increases. When they are all down except one, our recovery mechanism

enters and respawns three new interceptors, thus softening the node stress and load

balancing our system to where it was at the start of the simulation.

Figure 3.12. Distributed Interception Simulations
(a) Scenario 1 shows node stress for one interceptor node. Better node stress is achieved when the root

and interceptor coincide in the same node. (b) Scenario 2 shows mean node stress for four interceptors.

The ideal case is shown in red (no node failures). The blue line shows a case in which up to three

interceptors fail and then recover. Mean interceptors‘ node stress increases in such cases.

3.2 THE WIDE-AREA REMOTE OBJECT MIDDLEWARE LAYER 117

3.2.3.2.2.2 Interceptor-based Load Balancing Scheme

This experiment is very similar to the previous one, since interceptor-based load

balancing is based on the use of Dermi‘s distributed interceptors. Figure 3.13 shows a

simulation of Dermi‘s interceptor-based load balancing scheme. In this scenario, we

simulated a group of nodes (objects), all belonging to the same multicast group, which

means that their load is automatically balanced by Dermi. For clarity, the figure displays

data only for the messages delivered to the event service‘s application layer, discarding

other kinds of messages (namely heartbeats, maintenance, etc.). The configuration used

an overlay network of 8000 nodes and a 1000-node multicast group. A total of 20000

messages were sent to this group and we used FreePastry‘s [40] local node simulation

facilities. The multicast group contains a single interceptor, which decides to which

node the message will be directed. Note that in a real testbed, we can consider that each

node contains a single object, and the interceptor decides how the load balancing of

requests is distributed among them.

Figure 3.13. Interceptor-based load balancing simulation

The topmost chart shows the simulations using a round-robin load balancing scheme, whereas in the

second case, a random assignment is used.

The first configuration used was an ideal case in which the interceptor load balanced

among all nodes using a round-robin policy. We focused on the node stress incurred in

the group‘s nodes, which measures the total number of messages received. In this case,

we observe the correct (and ideal) message distribution among all nodes in the multicast

group. However, the interceptor itself, as well as the group‘s root node (which in this

case, coincide), are by far, the most overwhelmed nodes. This is the main problem that

arises in this case: depending on its overall capacity, the interceptor itself may be

overloaded with messages. This can be seen in the top righthand chart in Figure 3.13.

Naturally, in order to reduce this overhead, the interceptor itself may be replicated as

well, as we have discussed in the previous experiment.

In the second configuration the interceptor randomly chose among the objects in the

group. Naturally, the results show that some nodes become more overwhelmed than

118 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

others because of the random distribution used. These results can be extrapolated to the

real world, where the unpredictability of many factors such as network bandwith or

node congestion may affect the ideal load balancing factors. By using appropriate

mechanisms (periodic messages, global state information, etc), the interceptor can

choose one node or another.

The same problem as in the previous case arises again: the interceptor can become a

bottleneck, so it can be replicated or, if replication is not a viable option, the

decentralized load balancing alternative can be chosen.

3.2.3.2.3 Discussion

Using the PlanetLab testbed, we verified that Dermi does not impose excessive

overhead on distributed object invocations; one-to-many invocations elegantly fit with

the application level multicast service, and anycalls and manycalls obtain good results

because of the inherent network locality.

Throughout our simulations, we found that the principal hot spot of our distributed

interception mechanism was rendezvous-point overloading (when there was more than

one interceptor per group). This problem is endemic to most group-multicast

algorithms, and approaches such as creating rendezvous node hierarchies have been

proposed in literature to alleviate it. Scribe currently does not support this feature, and

although it has the advantages of being a single entry point to the group (thus, being

able to perform access control, distributed interception, and so on), it might also become

a hot spot in terms of being overwhelmed by messages.

3.3 THE WIDE-AREA DISTRIBUTED COMPONENT MIDDLEWARE LAYER 119

3.3 The Wide-Area Distributed Component Middleware

Layer

The continuous advances in Computer Science and Telecommunications have changed

the way software applications are being developed. In particular, the increase in

computing capacity, the reduction in hardware and communications costs, and the

emergence of global data networks have maximized the use of distributed systems. This

means that existing programming models cannot naturally cope with the complex

requirements of these kinds of systems. Therefore, new programming paradigms like

coordination, component-oriented programming, or mobility appeared to improve

software application development processes.

Nowadays, one of the most popular approaches is Component-based software

development (CBSD), which tries to establish a basis for design and development of

reusable software component-based distributed applications. This discipline has

attracted increasing interest from the academic as well as the business point of view.

Traditional component-based architectures are mainly client-server based. This

approach is suitable for local-area and metropolitan-area scope applications. Many

technologies like EJBs [46], CORBA CCM [35] or DCOM [32] (and its evolution,

Microsoft‘s .NET Framework [54]) have proven to be successful in these fields.

However, when trying to develop a component-based application which is to be

deployed in a wide-area environment, limitations of the client-server architecture

rapidly arise. Subsequently, the server itself may become overwhelmed with multiple

client requests. An array of clustered servers is sure to help in such a case, but may well

be economically expensive.

Here is where decentralization and the wide-area remote object middleware described

throughout this chapter can be useful. Although our remote object layer is a solid

building block for wide-area distributed applications, it is not as abstract as the

developers would like. From the software engineering perspective, it would be

interesting if we could develop reusable component-based applications, and a remote

object middleware is usually not enough. A lightweight component-oriented model

would facilitate even further the development of worldwide accessible applications.

Therefore, we believe evolution is required to a higher level of abstraction, to

decentralized wide-area components.

Wide-area component models are not a novel concept. As we explained when

describing related work in this field, some approaches use Grid (ProActive [60]) or

unstructured p2p infrastructures (P2PComp [75]). However, we propose a new

decentralized component model built on top of a generic wide-area remote object

middleware. Our model provides traditional component services like naming,

activation, passivation, event notifications, and persistence on top of a decentralized

infrastructure. We use the underlying object middleware to implement these services in

a decentralized and efficient way. Specifically, component deployment and location

takes place in a decentralized and fault-tolerant naming service. When components are

to be activated and invoked, we use the network‘s locality properties to call the client‘s

nearest replicated instance. For stateful components, state will transparently be

maintained by all their replicas. The different events transmitted from and to the

120 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

component instances are propagated by an application-level multicast protocol.

Moreover, to handle possible high invocation peaks, we use decentralized load

balancing techniques, and new component instances are subsequently activated on

demand.

The main contributions of our wide-area distributed component framework are the

following:

 It is a new wide-area component model that runs on top of a decentralized

network infrastructure.

 It uses a decentralized component location and deployment facility.

 It implements a resilient and autonomous lightweight container model, which

provides component‘s life cycle services, and many others. Component

instantiation is of special interest because it takes into account underlying

network locality properties (if available).

We have built a prototype implementation of this distributed component framework

called p2pCM. This middleware runs on top of Dermi and it uses all of its services,

which benefit from using a structured peer-to-peer overlay network approach.

In the rest of this section, we describe our distributed component model, its architecture

and services, as well as its innovative services and its lightweight container model. For

more details about the practical implementation prototype p2pCM, please refer to the

annexes.

3.3.1 Architecture and Services

Before describing our new component model in greater depth, we briefly define the

terms component and component model.

In [112], a component is defined as a unit of software application composition with

contractually specified interfaces and explicit context dependencies that can be

developed, acquired, added to the system and composed of other independent

components, in time and space.

Component interfaces determine the operations that a component implements, and the

operations it uses from other components during its execution.

A distributed component-oriented model is an architecture that defines components and

their interactions. It must provide a packaging technology for deploying binary

component executables. Moreover, it needs a container framework for injecting life

cycle, thus permitting activation and passivation of component instances. Other services

include security, transactions, persistence, events, and others.

Our wide-area distributed component-oriented model is thought to implement most

traditional component model services, although they adapt them to the underlying

decentralized topology. These include:

3.3 THE WIDE-AREA DISTRIBUTED COMPONENT MIDDLEWARE LAYER 121

 A decentralized component location and deployment facility.

 A decentralized lightweight container model which provides components with

the following services.

 Component life cycle service

 Component persistence

 Adaptive component activation

The following sections describe each of these innovative services.

3.3.1.1 Decentralized Component Location and Deployment

All components must be previously registered in the system so they can be used by any

client. This deployment phase is found in all traditional component models, as well as in

ours.

The idea is that any component can be packaged into an archive, jointly with its

metadata. It is then uploaded to the system, where it is automatically deployed, and its

metadata registered in some kind of naming service. This metadata includes all types of

information that a component should make public about itself, and its properties. This

information allows containers, environments, development tools, and other components

to discover the functionalities that a component provides via introspection.

The factory class contains all the necessary annotations for describing the component.

Apart from component‘s metadata, the component archive must somehow be uploaded

to the system. Traditional component models normally provide a centralized naming

service, in which a component‘s metadata is bound and becomes available to clients.

However, when trying to apply the same paradigm in wide-area network environments,

this approach is not sufficient. Over time, the centralized naming entity can be

overwhelmed with requests.

In our model, we use the remote object middleware‘s decentralized naming service to

store all the metadata of a component (read in deployment time), as well as its class

files. This is done to allow dynamic component class loading in clients that do not have

the necessary component classes. As described above, our naming service benefits from

the efficient overlay network routing properties thus hashing the component‘s identifier,

and storing the values in the node whose key is closer to this hash.

We need to provide some kind of fault-tolerance mechanism to support possible node

failures. To do so, we use the persistence service provided by our remote object

middleware.

When attempting to instantiate a component, we first need to query the naming service

to find its metadata. To do so, we only need the component‘s identifier, which can be an

absolute URI like p2p://results.deim.etse.urv.cat, or any kind of pre-generated GUID

122 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

like in COM [32]. Notice that our approach differs quite considerably from traditional

component models, which need to know the address of the machine that hosts the

naming service. In our case, we only need to know the component‘s identifier: the

naming service runs on all of the nodes in the network. To which machine (or node) a

component‘s metadata is mapped is irrelevant to us.

3.3.1.2 Decentralized Lightweight Container Model

Components normally exist and cooperate within containers. Containers are software

entities which can hold other entities, and provide a shared interaction environment.

The container is responsible for managing components‘ life cycles, and notifying them

about life cycle events such as activation, passivation, or transaction progress.

Components provide event interfaces that the container automatically invokes when

particular events occur. The container also provides components uniform access to

services such as persistence, security, transactions, and many others. In traditional

client-server based component models, the container itself is usually based on a web

application server, database server, operating system, etc. These kinds of containers are

rather monolithic and consume large amounts of resources thus requiring powerful

machines to run on. This philosophy remains in stark contrast with that of p2p, where

machines are usually treated as equals, and applications run on them must adapt to each

node‘s own capacity and limitations.

For our component model we have taken these considerations into account and opted

for designing a decentralized lightweight container model. In our case, all of the

nodes that belong to the network are containers and, as such, they can house many

components. The idea is that any component can be run in any node (except for any

restriction), because each node runs a lightweight container.

Our containers are fault resilient and autonomous: components are replicated throughout

the network. If a container fails, surely other containers housing those components will

exist in the network, because they are automatically replicated.

Now we shall describe the different services our decentralized container model offers to

components.

3.3.1.2.1 Component Life Cycle Service

The container is responsible for the activation and passivation of components. The

process of a client interacting with a component instance starts with the location of the

factory class, which is responsible for obtaining a reference to the component by calling

createInstance().

The factory method createInstance() accepts several parameters, which include the

component‘s interface to be returned (our model supports the extension interface

pattern; that is multiple interfaces), and the instance unique identifier. When calling this

method, several things may happen:

3.3 THE WIDE-AREA DISTRIBUTED COMPONENT MIDDLEWARE LAYER 123

 No other component instance is already active in the network. In this case, the

component instance will be activated in our local container, and a local reference

will be returned so as we can interact with it.

 Other component instances are already active in the network. In this case, we

return a reference to the closest instance (basically, an anycall is done to get the

closest instance‘s stub) to us. However, if this closest instance informs us that it

cannot accept more requests (it may be overwhelmed), a local copy is activated.

Note that more complex algorithms could be adopted, which depend on the

component‘s utilization pattern. A study of more techniques is beyond the scope

of this thesis.

Whatever the case, a reference to the component is returned (unless an exception is

thrown). Once we have this stub reference, we can call the interface‘s methods, which

are executed on the remote component. We have adopted a similar approach to that of

COM/COM+ [80] for supporting multiple interfaces. Every component interface

extends ComponentInterface (similar to COM‘s IUnknown), and it thus provides the

queryInterface() method to obtain references to the other component‘s interfaces.

Figure 3.14 shows this component model‘s general architecture. Basically, the idea is

that any client willing to access a wide-area component needs to look the component

factory up on the decentralized naming service. The client requests the factory class

from the naming service and, when instantiated, it asks the corresponding container

node to return a component stub reference to the client. The client can then call the

component via the stub.

Component instances are passivated when they do not receive any remote invocations

for a certain amount of time so as to save resources on the node. This time depends on

properties that are determined by the container itself, which include memory utilization,

network bandwidth, etc. The container calls the passivate() method on the component,

so it can proceed with the appropriate instance finalizations.

124 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

Figure 3.14. Diagram of the Wide-Area Component Model’s architecture

Clients look up the component factory, which returns a component instance reference residing on another

node. Note that each node in the network runs a decentralized lightweight container runtime environment.

The client requests the factory class from the naming service (1), and when instantiated, it asks (2) the

corresponding container node to return a component stub reference to the client. The client can then call
the component via the stub (3, 4, 5, 6).

3.3.1.2.2 Component Persistence

Components in our model can be of two types: stateful and stateless. Stateless

components do not maintain a state while stateful ones do. As stated in the section

above, component instances may be replicated throughout the network. This object

replication is maintained by Dermi joining all replica objects into the same multicast

group. Whenever the object‘s state changes, an event is sent to this group, and all

replicas update accordingly.

For stateful objects, it is also necessary to provide a persistence mechanism to take care

of the total passivation of component instances. If all component instances are

passivated, their shared state is lost. The persistence strategy is chosen by the

component itself by means of the persistence annotation in the deployment phase.

Currently there can be two types of persistence:

 Container Managed Persistence (PersistenceType.CONTAINER). In this case,

just before calling the passivation method, the container calls

getRemoteObjectState() on that instance. The returned object‘s state is then

inserted and replicated accordingly using the naming service. The next time a

component instance is activated, and no other running instances are found, it

will get the state from the naming service.

Client

Factory

Decentralized
Naming

Service

Decentralized
Lightweight
Container

Comp stub

Metadata

Component

Decentralized p2p Network
Wide-Area Component Model’s

Architecture

1
2

3

4

5

Transactions

Security

Notifications

Persistence

Adaptive activation

Life cycle

6

3.3 THE WIDE-AREA DISTRIBUTED COMPONENT MIDDLEWARE LAYER 125

 Component Managed Persistence (PersistenceType.COMPONENT). In some

cases, the above method is not enough because more fault tolerant mechanisms

are needed. Persistence is managed exclusively by the component. Whenever the

passivate() method is called, it can perform its own persistence strategy, or it can

even use a timer which stores the state every x seconds.

3.3.1.2.3 Adaptive component activation

Component instances are created when a client wishes to interact with the component.

Depending on the closest instance and load, new replicas are created or the already

active instance is used. In either case, and especially in wide-area environments, some

instances could become temporarily overwhelmed with requests from nearby clients. To

avoid this problem, we use an adaptive component activation mechanism, which we

shall describe below (see Figure 3.15).

Each container is set on a physical node in the network and runs a key-based routing

overlay substrate. The node can easily know which immediate nodes are delivering

messages to it (simply by attaching previous node information on the message by means

of a getPreviousHopHandle() method). The container on each node should

continuously sense different node parameters (memory and CPU utilization, network

bandwidth, number of component invocations, etc.) for each component instance. If an

upper threshold is surpassed, it means the component (C) is becoming overwhelmed

with a request peak and we start the adaptive component activation algorithm.

The affected container identifies the immediate peak request forwarding neighbour, and

it is ordered to activate a new replicated component instance (CR) on it. Note that this

newly activated entity falls within the natural pathway from the client to the destination

component instance. This scheme improves and de-stresses the original instance (C) but

if left alone, it would absorb the peak all by itself. The strategy adopted by CR is to act

as a request faucet. For all of the requests addressed to C which fall into the pathway

that leads to CR, CR will process some of them (according to a specific load balancing

policy that should be dynamically calculated). This scheme diminishes the number of

requests to C, and achieves the desired request peak load balancing. Should the number

of requests be incremented and the threshold surpassed once again, the methodology

would be the same. Consequently, placing component replicas all along the approaching

overwhelmed pathway would reduce the stress on these component instances.

Once the request peak has passed, component instances that have not been called for a

certain amount of time would be automatically passivated by the container. This scheme

would activate replicas on demand where there is more need, and passivate them when

they are not required.

The activation hooks for this adaptive activation scheme have been designed for our

p2pCM prototype, and we are working on getting container node parameters (possible

through Java 1.6‘s onwards). Therefore, many parameters, such as the request faucet

drop rate, still have to be fine tuned,. Evaluating and performing tests for this phase

remains as future work.

126 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

Figure 3.15. Adaptive component activation scheme

3.4 Prospective Uses of our Proposed Wide-Area Middleware

We foresee many prospective applications that could benefit from the services provided

by our middleware proposal in the next few years. These application-domain examples

include:

 Enterprise edge computing. Akamai‘s EdgeComputing initiative [3] proposes

that enterprises deploy wide-area systems that are accessible from different

countries to benefit from the locality of the Akamai network. This means that

the code that reads, validates, and processes application requests executes on

Akamai‘s network, thus reducing the strain on the enterprise‘s origin server. Our

services can also provide resource location and network locality in a

decentralized fashion without depending on proprietary networks. For example,

a company could deploy a wide-area e-commerce system interconnected with

our underlying p2p substrate and using Dermi‘s services.

 Grid computing. The Open Grid Services Architecture (OGSA) [37] has

standardized several services for developing distributed computing applications.

Grid components can be accessed using Web services and located using naming

services. State changes can be propagated using event services. Nevertheless,

there is ongoing research into creating other wide-area grids. Our services could

help solve many of the problems this work will encounter. For example, our

decentralized object-location service can be very useful for locating resources in

a deterministic way. Further, we can exploit grid locality with anycall

abstractions and propagate changes using multicall abstractions. Our distributed

interception mechanism could also be used for load-balancing purposes.

1. Clients U1 and U2 are continuously invoking components on C.

2 - 3. C is overwhelmed and activates a new replica (CR1), which
absorbs many calls directed to C from the same pathway.

4. Despite the new replica, request stress is not alleviated and CR1
activates a new one (CR2), which now suffices.

U1

U2

CR2

CR1

C
1

1

2

3

4

3.4 PROSPECTIVE USES OF OUR PROPOSED WIDE-AREA MIDDLEWARE 127

 Multiagent systems. The Foundation for Intelligent Physical Agents [17]

specifications define a multiagent framework with services for agent location

and a messaging service that supports ontologies. Nonetheless, the research

community has not yet proposed a wide-area multiagent system. For example,

AgentCities [2] utilizes a central ring to interconnect several agent

infrastructures. (The AgentCities network is open to anyone wishing to connect

agents and services. The initiative already involves organizations from more

than 20 countries involved in a significant number of different projects.) A

scalable multiagent system could use the services we propose to achieve

decentralized agent location; it could also benefit from network locality to use

agent services and from multicalls to propagate state changes simultaneously to

many agents.

Finally, the Computer-Supported Cooperative Work (CSCW) domain is an interesting

arena for wide-area applications. Developers could use our infrastructure to build social

networks, massive multiuser games, and online communities.

 Shared Session Management: a shared session is essential to any CSCW

toolkit because it defines the basis for shared interactions in a common remote

context. Shared sessions can be implemented as reusable distributed

components. This approach helps us benefit from several p2pCM component

services, some of which are implicit:

 Session location. Session components are instantiated as components. This

means that if any instance of this session already exists on the network, we

can interact with it directly. Moreover, if several of them exist, we are

guaranteed to interact with the one closest to our node, in terms of network

proximity.

 Session persistence management is accomplished by specifying the default

session component persistence policy. This feature of our component

middleware involves serializing an object‘s state into the decentralized

naming service, which replicates this data among the destination node‘s

closest neighbours.

 Session state propagation. Whenever session state has to be propagated

among all other session users, the multicall primitive from the remote object

layer is used. All session instances are rooted in a multicast tree. When an

event is triggered from any of them, all other replicated instances are updated

accordingly in a transparent manner. This approach can also be applied to

any of the session‘s inner objects.

 Session load balancing is accomplished by the adaptive component

activation scheme. Whenever any of the session‘s instances becomes

overwhelmed for any reason (typically a bunch of requests), another instance

is activated in the most overwhelmed neighbour node. Therefore, it will

alleviate the request rate and achieve load balancing in a transparent way to

the developer.

 Awareness Mechanisms: an awareness component can also be created to

monitor shared session interactions. We can use these services:

128 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

 Distributed interception. This feature is used for attaching the monitoring

component to the components it should monitor for interactions. In this case,

every time an event (interaction) is sent (via multicall) to the object‘s

multicast group, the awareness component will intercept the event and store

it for later statistical or data mining purposes.

 Other services. Like the session component, the awareness component

benefits from decentralized persistence management, location, and load

balancing.

 Coordination policies: The main functionality of the coordination components

is to establish group coordination policies among groups of objects contained in

a shared session. Basically, the main feature used is:

 Distributed interception, which again plays an important role in achieving

coordination. Before sending an interaction (event) to an object, this event is

captured by the coordination component, which will check whether the user,

object, etc. is authorized to perform the action in a coordinator-specified

role.

We believe that these essential CSCW services can be very useful for developing wide-

area collaborative applications.

3.4 PROSPECTIVE USES OF OUR PROPOSED WIDE-AREA MIDDLEWARE 129

3.4.1 A Sample Distributed Computing Application Scenario

One scenario in which we could use our middleware services is the development of a

wide-area distributed computing application. We should point ut that the services

provided by our infrastructure are hooked into the application development cycle. This

section describes a sample case for our wide-area middleware proposal. The next

chapter introduces a real implemented case: SNAP.

One possibility is to develop a wide-area distributed computing application similar to a

SETI@Home [41] or United Devices Cancer Research Project [23] model. These

applications normally require a central server which distributes computing units to

home computers for analysis. Our component model could be used to build an

application which would be efficiently fault tolerant and resilient to high request peaks.

Our approach does not discard bridging our component model with others. Continuing

with our example, we must assume that there is an application server which houses a

heavy component responsible for reading data from Arecibo‘s radiotelescope [8]. This

DataFeed component could be an EJB or a CORBA component. The DataFeed can

communicate with other external components which transparently run on p2pCM.

The idea is that interested nodes activate a Processing component on their local

containers (this can be done by the application clients themselves, or directly by the

DataFeed component, depending on the activation policy). This component can thus be

receptive to the DataFeed component‘s calls. The Processing components are aligned

into a multicast group, so that the data feeder can request data unit analysis by

anycalling or multicalling to the Processing component group.

Once each Processing component finishes its data unit analysis, instead of returning

data to the central DataFeed component (which may create an important bottleneck

there), it passes data to another Results component by means of an event. This

component manages the results persistence by replicating itself and storing state

information in the DHT infrastructure.

Whenever the DataFeed component wishes to obtain the results (cyclically every x

hours), it will anycall its closest Result component instance, which provides it with the

latest results. Additionally, at the output of the Result component, we can attach a

Filtering component, which can be queried by the DataFeeder to obtain the most

significative results (i.e. I want the 10 most significative Gaussians so far). A diagram

of this architecture can be seen in Figure 3.16.

130 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

Figure 3.16. Component diagram of the p2pCM’s sample distributed computing application

(P refers to Processing components, R to Results, and F to Filtering). P and R are, in this case, replicated

component instances. Note the interactions between different components.

This is a usage scenario in which we believe our component model could be useful.

Nevertheless, as we have pointed out at the beginning of the previous section, other

combinations of p2p networks and our component model are possible.

3.5 Summary

In this chapter we have presented the two pillars which sustain our whole wide-area

middleware proposal. We first introduced a wide-area decentralized event-based

object middleware (and its Dermi implementation). We have analyzed its architecture

and described all the services it provides, which make good use of the three main core

layers (see previous chapter): the routing layer, the application-level multicast layer, and

the persistence layer.

Our Dermi prototype is based on a structured peer-to-peer network substrate, and we

have shown that it is an efficient and viable object middleware by means of

experimental and empirical evaluations.

Dermi is not a finished product yet. It is continuously evolving, and it can be

downloaded from http://dermi.sourceforge.net. We are continuing to improve it by

including several useful features. In contrast to sequential manycalls, for example, we

are thinking of implementing parallel manycalls for better performance. The behavior

would be similar to a multicall, as we again multicast to the tree, though starting from

the closest client‘s node in the group, rather than from the root itself, thus taking locality

into account. Results could be communicated back to the client by all the group‘s nodes

that satisfy the condition. Once the client receives all necessary data, it discards other

incoming messages from remaining group members. For very large groups, a multicast

DataFeed

P

P

P

R

R

R

…

F

…

http://dermi.sourceforge.net/

3.5 SUMMARY 131

tree search could be purged by specifying a maximum depth to cover, thus preventing a

client from becoming overwhelmed with messages. This methodology would incur

more node stress in the client, but it would be more efficient in terms of parallelism. We

are also thinking of adding authentication mechanisms to prevent malicious nodes from

compromising our system‘s participants. Public-key cryptography is required to achieve

this goal, which adds a performance expense, although the KBR layer should provide us

with some security primitives to get Dermi hooked into. Finally, we are making our

rendezvous-point change buffering algorithms more consistent to account for all

possible uses.

The second main block of our entire proposal is a decentralized component model

framework (and its practical implementation, called p2pCM). This model builds on

top of the remote object middleware layer, and it provides a higher level of abstraction

to application developers by permitting components to be reused through many

applications.

Therefore, our wide-area middleware proposal fulfills all the requirements enumerated

in the previous chapter. These are:

 Scalability. A Wide-Area Middleware framework must be based on a scalable

routing substrate for efficient message routing. Structured peer-to-peer overlay

networks provide an efficient and scalable message routing substrate. Therefore,

communication between decentralized nodes is efficient and follows a Key-

Based Routing scheme, where a specified key,value pair is efficiently mapped to

a particular node, in the form of a giant distributed hash table (DHT).

 Fault tolerance and high availability. These requirements are fulfilled by our

middleware proposal, since it provides transparent mechanisms for data access

and replication. Any object or component can be automatically replicated and its

state transparently maintained by our middleware. This way, once a node

housing any object or component becomes unavailable, the closest one takes its

place, by means of a transparent internal anycall invocation.

 Load balancing. Our middleware provides two different load balancing

mechanisms. One is based on the distributed interception feature, and the other

on the anycall abstraction. Both of them are complementary and may be used in

different scenarios. This service is also available to application developers,

which may declaratively specify which load balancing scheme they wish to

utilize for their objects, components, and applications.

 Dynamicity. Heterogeneous and very different types of nodes may constantly

join and leave the overlay network. In this case, the overlay network

transparently manages node departures and arrivals for us. Once a node joins the

network, it acquires responsibilities (that is to say, it is given key-pair values to

store), and once a node leaves or disconnects abruptly, its replicated values are

redistributed among the remaining participating nodes.

 Use of the resources on the edges of the Internet. The idea is to make good

use of all the scattered and unused resources of any of the peers forming the

network. Since it is a peer-to-peer decentralized network, all members are

132 CHAPTER 3. WIDE-AREA MIDDLEWARE PROPOSAL

treated as equals and, therefore, they can all contribute resources to their

conforming network. As a consequence, storage and network bandwidth is

shared between all participants, since they have to hold state and replication

data, and also permit messages to be routed (and forwarded) through them.

 Usability and programming abstractions. Our middleware has been designed

with usability in mind. Therefore, our prototype implementation has been

specially architected following the ease-of-use directive. Thus, it is very easy to

develop new objects, components, and applications on top of Dermi and

p2pCM. This ease of use is demonstrated in the annexes at the end of this thesis,

in which we describe our middleware‘s API. The use of Java annotations

enormously facilitates method tagging for specifying desired features and

attributes. Moreover, we provide the developer with numerous programming

abstractions, which include the availability of remote objects and/or

components, a scalable object/component location service, and a set of

innovative group communication abstractions (namely multicall, anycall,

manycall, etc).

We have demonstrated that our wide-area middleware proposal complies with all due

requirements. Other wide-area middleware approaches lack some or many of these

requirements, making them difficult to use, since many services are not implicitly

provided or are even non-existent. Moreover, our proposal is, to the best of our

knowledge, the first to envision a wide-area middleware framework based on a

structured peer-to-peer overlay network.

In the next chapter, we introduce a proof-of-concept implementation of a wide-area

application which uses our remote object and component middleware. Even though

p2pCM provides the developer with components, a new API and way of programming

must be learned. Our first idea envisioned some kind of a global framework for

developing wide-area applications whose learning curve was as low as possible, thus

maximizing the usability requirement. The idea of having lightweight containers was

the tip of the iceberg; and as we were strongly inspired by the J2EE application

framework, we thought we could adapt it to the wide-area world, trying to avoid

bottlenecks, scalability problems and making it transparently fault tolerant.

This is how our wide-area deployment framework application called SNAP was created,

and it serves as a proof of concept for our proposed wide-area middleware architecture,

since it is built on top of it and makes extensive use of its services.

3.5 SUMMARY 133

134

Chapter Four

4 Applications of our Middleware:

SNAP

4.1 Introduction

In this chapter we present a use case of our proposed architecture and its concrete

implementation in the form of Dermi and p2pCM. We present SNAP, which aims to be

a wide-area J2EE-compatible web application deployment framework, for easy

transitioning from client-server applications to wide-area ones. This product can be

downloaded and evaluated from its website: http://snap.objectweb.org.

As we said throughout this thesis, it is not usually easy to develop a wide-area

distributed application from scratch, since not so many wide-area middleware solutions

exist. As a consequence, developers have to waste their time reinventing the wheel by

building common services. Such basic services include fault tolerance, data replication

and caching, security, application-level multicast, and many others.

Even though it is not so easy to develop these kinds of applications, some p2p toolkits

have emerged mainly for the development of collaborative enterprise applications.

Perhaps one of the most widespread is Groove [24], which follows a p2p model to

initiate and maintain workspaces where users exchange text with instant messenger

software, applications, voice and video in real time through various panes within one

frame or skin. Enterprise collaboration is nowadays a hot topic and this is demonstrated

by the acquisition of Groove Networks by Microsoft Corporation. The future relevance

of wide-area collaboration is becoming a reality.

When collaborative applications need to be implemented, Groove provides an extensive

API. Naturally, these applications are designed to be run within Groove‘s proprietary

http://snap.objectweb.org/

4.2 RELATED WORK 135

environment. Moreover, if these applications are to be implemented, this new API,

which is not generic enough to support wide-area p2p applications, must be understood.

Therefore, there is a growing need for a wide-area p2p platform which allows

developers to build their applications, with no need to learn a new programming API.

Access to persistence, security, and failover services should be transparent. But is it

possible for a traditional client-server web application to be easily transformed into a

p2p web application with minimal descriptor changes thus providing worldwide

scalability? To answer these questions, we propose SNAP: Structured overlay Networks

Application Platform.

SNAP is completely based on our previous contributions (Dermi and p2pCM), and it

offers a novel approach, which includes:

 Easy adaptation of existing client-server J2EE-compatible applications to a

wide-area p2p scope: adding a new XML descriptor is enough to port a J2EE

web application to SNAP.

 Secure web application deployment on a decentralized infrastructure. This

means that only authorized users can deploy previously signed web applications

on SNAP.

 Decentralized embedded services like persistence, load balancing, fault

tolerance and edge computing are also available in the SNAP application

development.

SNAP is thus oriented to wide-area lightweight web application deployment on a

decentralized network. Since it follows the p2p paradigm, it is designed for lightweight

applications which do not require huge amounts of node resources. It can be suitable for

enterprise wide-area collaboration, the elaboration of wikis, weblogs, and static

webpages that require worldwide scalability.

Our system is clearly not adequate for applications relying on large back-end databases,

since it would be infeasible to copy and synchronize large databases to light and volatile

p2p clients. Moreover, those applications which deal with Enterprise JavaBeans (EJBs)

are also excluded due to the heavyweight nature of the EJB components themselves.

We believe SNAP can become the foundation for enterprise collaborative application

deployment on a secure, non-proprietary p2p network. Throughout this chapter we

describe SNAP‘s architecture and services, which have been validated by an empirical

evaluation on top of the PlanetLab network.

4.2 Related Work

To the best of our knowledge, SNAP is the first wide-area oriented platform to provide

decentralized deployment of J2EE-compatible web applications on top of a structured

p2p network.

136 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

Chameleon [55] is a decentralized middleware design that dynamically allocates

resources to multiple service classes inside a global server cluster. It is based on an

epidemic protocol for disseminating state and control information. All services are

expected to run within certain Quality of Service (QoS) parameters. A request routing

algorithm is implemented which forwards requests to other neighbor nodes if a server is

overloaded. This is similar in SNAP, which uses the underlying anycall abstraction.

However, in SNAP we currently consider network proximity as a QoS parameter. We

are working on developing more complex QoS algorithms to allow dynamic application

adaptation.

As far as edge services are concerned, Akamai‘s EdgeComputing initiative [3] proposes

that enterprises deploy wide-area systems that are accessible from different countries to

benefit from the locality of Akamai‘s network. This means that the code that reads,

validates, and processes application requests executes on Akamai‘s network, thus

reducing the strain on the enterprise‘s origin server. SNAP‘s services also provide

resource location and network locality in a decentralized way, but without depending on

proprietary networks. For instance, a company could deploy a wide-area collaboration

system using the SNAP infrastructure. However, Akamai‘s nodes are going to be more

robust than the traditional p2p network members, since they are static dedicated servers.

They are used, then, to improve performance, take advantage of network proximity and

provide outstanding reliability. On the other hand, SNAP targets a different domain. We

provide lightweight edge computing, because the p2p network is less reliable, and we

target different application domains: collaboration, wikis, web services, etc.

Our concept goes further than such other approaches as p2p web hosting (YouServ [61])

or structured p2p content distribution networks (Coral [77]). SNAP provides true

application deployment based on web standards on top of a p2p network. Coral is a

structured p2p content distribution network, which allows a user to run a web site that

offers high performance and meets huge demand. It uses a p2p DNS layer that

transparently redirects browsers to participating caching proxies, which in turn

cooperate to minimize load on the source web server. SNAP‘s location service

(p2p://…) is similar to Coral‘s (.nyud.net:8090). Nevertheless, Coral uses another

indexing abstraction (called a distributed sloppy hash table (DSHT)), which creates self-

organizing clusters of nodes that fetch information from each other to avoid

communicating with more distant or heavily-loaded servers. However, the purpose of

SNAP is not only to provide a redirection service, but also to allow secure web

application deployment as well as the other services mentioned above.

In the Grid world, ActiveGrid Grid Application Server [1] is designed to scale

applications across horizontal grids of commodity computers. ActiveGrid Grid

Application Server interprets applications at runtime and can deploy them using a

variety of proven deployment models and multiple data caching patterns. Indeed, this

solution provides many interesting and scalable services like dynamic node registration,

data caching, session management, transaction management, and interface fragment

caching. However, SNAP‘s scope is completely different, since it is not aimed at grid

computing or real-time applications. For these domains, solutions such as ActiveGrid

are more suitable.

Other related projects include Magi [63], which enables information sharing and

messaging on any device using web-based standards like WebDAV [52], or XML. It

4.3 ARCHITECTURE 137

also includes a micro-Apache HTTP server [4] which provides a link to every instance

of Magi, a set of core services, and a generic extensible interface. However, Magi is not

based on a structured p2p network so it does not provide services like network

proximity awareness, which SNAP uses extensively to locate closest replicas.

The JxTA project [39] is also partly related to SNAP since its main aim is to provide an

open collaboration platform that supports a wide range of distributed computing

applications which enables them to run on any device with a digital heartbeat. Even

though JxTA provides a set of APIs ideally suited for wide-area application

development, their design is too low-level, and they are too complicated to learn and

use. They do not even deal with p2p components, which is a major drawback when

developing complex applications.

4.3 Architecture

SNAP‘s architecture is shown in the diagram below (Figure 4.1). The idea is that each

node in the structured p2p network holds a copy of SNAP running. The members of the

p2p network are typically end-user machines which may join and leave the network

frequently.

Each node in the overlay network is conformed basically by a p2p network routing

layer, which routes all messages to / from the network. Upper layers are the object

(Dermi) and component (p2pCM) layers through which the lightweight webserver

interacts with the p2p network. The SNAP core component provides all of SNAP‘s

services to web application developers. We shall now describe each of SNAP‘s layers in

order to better clarify the figure.

4.3.1 Peer-to-Peer Routing Layer

As we mentioned earlier, p2p systems and algorithms have evolved in recent years.

From the early central index scheme used in Napster, and the flooding techniques of

Gnutella, to the structured p2p key-based routing (KBR) overlays there has been an

important leap. We have chosen to sustain SNAP on top of a network of this kind, thus

taking advantage of the Dermi remote object middleware, and the p2pCM reusable

component framework. Therefore, SNAP can exploit its already well known inherent

properties: scalability, fault-resilience, self-organization, routing efficiency, network

proximity organization, etc.

138 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

Figure 4.1. SNAP’s architecture diagram

SNAP‘s services are sustained on top of the Jetty Web Server, as well as the p2pCM component model,
and the Dermi object middleware.

4.3.2 Dermi and p2pCM Layers

On top of the routing layer, there is a distributed object layer (Dermi), on top of which

there is a distributed component layer (p2pCM). Both these layers provide the

foundations for SNAP‘s services.

4.3.3 Lightweight Web Server Layer and SNAP’s Core Layer

Since the aim of SNAP is to allow decentralized web applications to be deployed, we

must make this possible in each of the network‘s conforming nodes. This is why we

need a lightweight webserver which runs on each member of the SNAP network. Jetty

[28] runs in the Lightweight Webserver Layer, since it perfectly suits our

SSNNAAPP NNooddee

SNAP

Node

Structured P2P Overlay Network

SNAP Core

Jetty Lightweight Web Server

p2p Routing Layer

Dermi

p2pCM

Persistence

Service

DHT

Database
HSQLDB-

WAN

Location

Service

Clustering

Service

Security

Service

Peer-to-
Peer API

Service

Web
Service

Layer

4.4 INNOVATIVE SERVICES 139

requirements: it is lightweight enough, and it is also written in Java. This is the layer

that allows web application access and deployment for each of SNAP‘s nodes.

Therefore, clients can connect through their favourite web browser to any of SNAP‘s

nodes in order to access any deployed web application.

The last layer in SNAP‘s architecture is the one containing the system‘s core. This is the

most important layer, since it glues all the others together and provides the innovative

services that developers can benefit from. This layer is described in the next section and

focuses on the services provided.

4.4 Innovative Services

SNAP’s Core and Services Layer essentially contains SNAP‘s main kernel, which

includes all of the functionalities and services used and exposed to web applications.

Before moving on each of SNAP‘s services, we outline the most important pillars of our

infrastructure. These are secure web application deployment, and web application

activation on demand, both of which are vital for understanding how SNAP works.

Figure 4.2. SNAP Deployer splash screen

This tool allows web applications to be deployed on a SNAP network.

 Secure and decentralized web application deployment. A J2EE application

authentication service is already bundled into SNAP. Indeed, restrictions must

be made since not everybody has the right to deploy any web application onto

the infrastructure. In order to prevent abuses and malicious uses, we have opted

for centralizing the deployment phase, so that only the administrator of the

network can install, deploy, and monitor applications on SNAP. As a

consequence, the anarchy generally found in p2p networks is controlled, and

users are prevented from unauthorized manipulation of web applications.

Obviously, before deploying an application, the administrator‘s signature must

be present. This is achieved by using the SNAPDeployer tool, which manages

the process of embedding this signature in any web application archive (WAR).

If the signature is unavailable, the file is not deployed, so users are unable to use

140 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

it since it will not be bound in the application‘s naming space. We use

public/private key cryptography and certificates to implement this functionality.

Figure 4.3. SNAP Deployer Wizard

Deployed web application data is not stored solely on one unique node. These

signed applications are replicated among different network nodes (we use

Dermi‘s own DHT service (Bunshin), in order to guarantee fault tolerance and

avoid bottlenecks.

 Web application activation on demand. p2p networks are very dynamic

environments and, as such, web applications can be activated on demand when

required. In SNAP‘s scenario, every time an application is requested by any

client, it is automatically downloaded from the p2p network, deployed and

instantiated on the local webserver. If other extra-services are required (eg.

database), these are also activated on demand. All accesses are local to that

lightweight server instance.

However, this only happens whenever no active instances of that web

application are already running on the network (we use p2pCM‘s component

instantiation feature). In this case, the client is automatically redirected to the

closest webserver which hosts that active application. This edge service allows

multiple replicas of an application to be currently running on multiple network

nodes. Changes are transparently and accordingly replicated along all replicas by

our p2pCM component model.

The transparent services provided to web application developers include the following

(see Figure 4.1):

 Uniform web application location (Location Service). Accessing SNAP‘s web

applications requires special Uniform Resource Identifier (URI) style addresses

(eg: p2p://deskshot.urv.net). These locators uniformize the address space, as

4.4 INNOVATIVE SERVICES 141

well as the application‘s access independently of its real location (IP address),

and the service provider. SNAP internally redirects requests to these applications

to the real IP addresses (which may change over time if nodes fail, new ones

join, etc). Therefore, these p2p locators do not have real location information

embedded in them.

In this case, whenever we want to access a SNAP application, we introduce its

p2p:// URL in the decentralized application locator (Figure 4.4) textfield located

in SNAP‘s home. After that, we are automatically redirected to an already active

instance, or if none exists, it is activated locally.

Figure 4.4. SNAP’s Decentralized Application Locator

 Adaptation and load balancing (Clustering Service). SNAP optimizes

network resources and thus adapts to application‘s load increments. This way,

the minimum number of nodes where the application can be replicated can be

specified. A cluster of J2EE web applications is then automatically formed,

transparently to both users and developers. All requests are distributed

accordingly depending on their physical origin, by means of Dermi‘s anycall

abstraction.

Internally, this J2EE web application cluster is managed as a replicated p2pCM

component, in SNAP. Periodic checks are performed between group members to

assure other members‘ liveness. Once a deficit has been detected between the

desired and the expected number of cluster nodes, a recovery algorithm is

executed, thus rebalancing the cluster and activating new application instances

on neighbor nodes. Application instances can be passivated as well, whenever

they have not been used for a specified time (dbPassivationThreshold parameter

in Figure 4.5), checkpointing the global state to the DHT, so as to free up

resources on the node. This adaptation algorithm will then be further refined so

that it can dynamically self-adapt to high demand peaks, thus providing more

robust and adaptive load balancing. We are currently using self adjusting

techniques to research new ways of providing such dynamic adaptation.

 Persistence Service. Our infrastructure basically provides two types of

persistence modes, depending on the application‘s needs.

 Replicated file warehouse is used to store the object‘s or component‘s

state in the DHT structure. In this mode, data is automatically replicated

among various nodes thus guaranteeing its availability in case of node

142 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

failures. We are currently using a simple version control system, but this

does not ensure that there will be no consistency issues with concurrent

updates. We are studying alternative ways of solving this multiple-

writers problem. One possible solution could be to use a log-based data

structure. In this way, updated data is only appended and never modified.

Therefore all changes can be committed. Naturally, there may still be

conflicts, but at least no data is lost, and it is easy to determine any

conflicts that have occured. Normally, this is a good persistence mode

when simple state information needs to be stored, and there is no to

perform complex queries on it.

 Replication and clustering of relational databases. Whenever our

applications require persistence on relational databases, SNAP provides

transparent replication between the different cluster members of the web

application. This edge service allows dynamic database activation on

demand. Additional clustered databases will be activated immediately to

provide load balancing. Moreover, a timeout period can be specified

(whenever the database receives no requests), after which the database is

deactivated so as to free up resources in the node. Following the p2p

philosophy, we have consequently opted for a very lightweight database

engine, HSQLDB [26], slightly modified to fit our needs (it instantiates a

group membership management p2pCM component, along with a data

replication p2pCM component, to take care of fault tolerance and data

dissemination along all other database instances belonging to the same

application). In case all the application‘s database instances have been

deactivated, the state is checkpointed to the replicated warehouse (the

DHT), thus guaranteeing that future database activations recover state

correctly from the last checkpoint.

In order to maintain state and consistency throughout all database

replicas, a p2pCM component manages group membership, along with

another data replication component, which propagates state changes.

Combined with these, a distributed interceptor object (traversed every

time an update is sent, and conveniently replicated for fault tolerance)

provides event ordering. This is to avoid consistency failures in case of

concurrent updates. This alternative is adequate if we consider that this

mode of operation only requires a few nodes for data storage (no more

than 5 to 10 is enough). Both the group membership component, which

keeps track of the liveness of the cluster members, and the distributed

interceptor provide lightweight ordering, which is adequate for most

applications. Nevertheless, we are studying the use of other mechanisms

to provide total or causal ordering which need to be further researched if

strong consistency checks are to be provided.

 p2p Application Programming Interface (p2p-API) Service. Since SNAP

resides on top of the p2pCM component model, and the Dermi object

middleware, it provides a natural gateway to these frameworks‘ APIs. Therefore,

we can easily create components or lower-level objects which use their services

of distributed interception, application level multicast, or their p2p invocation

4.5 SNAP’S USE CASE SCENARIO 143

abstractions (anycall, manycall, multicall, directcall, hoppedcall, etc.), thus

enriching application developers with new possibilities.

 Web Service Layer. Service Oriented Architectures (SOA) are an emerging

paradigm these days. We believe that this concept can also be applied in wide-

area p2p environments. In fact SOA is an architectural style whose goal is to

achieve loose coupling among interacting software agents. In this case, a service

is a unit of work done by a service provider to achieve desired end results for a

service consumer. Both provider and consumer are roles played by software

agents on behalf of their owners.

We have added web service capabilities to SNAP in order to try to overcome

one of its main limitations: its Java-centric approach. Therefore, with this layer

we enable the deployment of web services in a p2p network, thus allowing

interoperability with other technologies. For more information about the services

offered by this layer, please refer to [96].

4.5 SNAP’s Use Case Scenario

In this section, we describe how SNAP‘s services are used in the life cycle of a web

application which is to be deployed on SNAP. This process involves some required

phases and other optional ones. However, our intention is to clarify the interaction

points between the SNAP infrastructure and the application we wish to deploy.

First, the J2EE web application is adapted to run on SNAP; next, it is deployed to

make it available worldwide. Whenever the application is to be accessed, it has to be

located first, and activated dynamically. Application data is accessed and persisted

transparently by SNAP‘s persistence service, and automatically load balanced for

concurrent accesses. Finally, fault tolerance is also provided by SNAP when nodes

where the application is instantiated suddenly stop working.

Since SNAP allows lightweight J2EE applications to be easily adapted, the first step is

to prepare the application so that it can be deployed on SNAP.

The Adaptation phase is accomplished through an easy, automated process of signing

and packaging (via the SNAP Deployer tool), which also creates a new XML

deployment descriptor file (snap-war.xml) (see Figure 4.5). The administrator can

automatically adapt static web application contents in the SNAP network too, with no

need to change a line of code. When dealing with applications which work with

relational databases, developers can choose to use direct JDBC connections (thus

making slight changes in the way the JDBC connection is obtained (calling SNAP‘s

Application.getConnection() method), or using DataSources (where they only need to

update the DataSource‘s JNDI name in the application‘s web.xml file), without touching

a line of code. The result of this phase is an administrator signed web application

archive (.WAR), which is ready to be deployed on the SNAP network.

The Deployment phase consists of uploading the signed web application onto SNAP.

This deployment step is different than in traditional web application servers. To prevent

abuses and malicious uses, we do not allow everybody to deploy any web application

144 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

onto the infrastructure. For this reason we opted to centralize the deployment phase and,

therefore, only the administrator of the network can install, deploy, and monitor

applications on SNAP.

Once the web application has been successfully deployed onto SNAP, we are ready to

access it. To do so, we use a standard web browser client, and redirect to our local

machine (or any machine we know SNAP is installed in), where SNAP‘s home is

presented. There we can insert a SNAP application locator (p2p-URL - eg:

p2p://deskshot.urv.net), which we will use to access the p2p application. In the

Uniform web application location phase, SNAP internally redirects requests to its

applications to the real IP addresses (which may change over time if nodes fail, new

ones join, etc). To achieve this redirection, the DHT is queried about the p2p locator‘s

meta-information. This meta-information has previously been introduced in the DHT in

the deployment phase. Therefore, the signed WAR file is retrieved and checked against

the administrator‘s public key for a match. Now that the web application package has

been located, it is time to activate the web application.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM

"http://java.sun.com/dtd/properties.dtd">

<properties>

 <comment>

 SNAP Web-Application descriptor

 </comment>

 <entry key="appName">SNAP TestSuite Application</entry>

 <entry key="appContext">snaptestsuite</entry>

 <entry key="appp2pUrl">p2p://snap.deim.urv.cat</entry>

 <entry key="persistence">database</entry>

 <entry key="clustering">4</entry>

 <entry key="dataSource">jdbc/SNAPDs</entry>

 <entry key="dbInitialPort">9999</entry>

 <entry key="dbDataPath">/WEB-INF/data/</entry>

 <entry key="dbPassivationThreshold">10</entry>

</properties>

Figure 4.5. Sample deployment descriptor file for any SNAP Application (snap-war.xml)

Peer-to-peer networks are very dynamic environments and as such SNAP allows web

applications to be activated on demand. Every time an application is requested by any

client, it is automatically downloaded from the p2p network (the DHT), deployed and

instantiated on the local webserver. If other extra-services are required (e.g. database),

these are also activated on demand. All accesses are therefore local to the lightweight

webserver instance. It is important to note that this process only takes place when no

available active instances of that web application are found to be already running on the

network. This Web Application Activation-on-Demand phase is more complex when

there are active web application instances already running on the network.

The idea is that all instances of a specific web application form a multicast group, and

we use Dermi‘s anycall feature, which sends an anycast message to the closest member

of the group. This way, when there are active web application instances, the client is

automatically redirected to the closest webserver which hosts that active application

replica, in case it is not too overwhelmed, which causes local activation. This edge

service allows multiple replicas of an application to be currently running on multiple

4.5 SNAP’S USE CASE SCENARIO 145

network nodes. An application instance is modelled as a p2pCM component and,

therefore, all state changes that occur within that instance, are accordingly replicated

among all others.

At the current stage, our SNAP web application has been successfully activated (either

locally or accessing the closest instance), and we start interacting with it. At some point,

it requires access to the Persistence service. If the application requires access to a

relational database, SNAP‘s persistence type is set to that of replication and clustering

of relational databases at deployment time. In this operation mode, SNAP provides

transparent data replication between the different instances of the web application.

If developers wish to take advantage of the DHT wide-area persistence, the replicated

file warehouse mode can be used. Normally, this is a good persistence mode when

simple state information needs to be stored, and there is no need to perform complex

queries on it.

Over time, our web application may start receiving massive invocations. In order to

allow our application to adapt to load increments, SNAP provides an Adaptation and

Load Balancing Service. We can therefore specify a minimum number of nodes where

the application can be replicated (the clustering attribute in Figure 4.5). A cluster of

J2EE web applications is then automatically formed, transparent to both users and

developers. All requests are distributed according to their physical origin, by means of

Dermi‘s anycall abstraction.

Finally, and with reference to the Fault Tolerance Service we can imagine that when

we access a web application, nodes may fail. Naturally, if we are redirected by SNAP to

an active instance, and it stops working, we shall receive the typical ―404 Page Not

Found‖ error in our browser. In this case, we can try to access the application again

using SNAP‘s redirection service (the p2p-URL locator) through SNAP‘s home page,

and be transparently redirected to another live instance – the closest one, or a new local

one if the closest one is too overwhelmed. This step, which works with no modification

on the client web browser, must be taken manually. Nevertheless, more automatic

approaches require the client browser to be modified (via a plug-in) so that it can detect

such failures, and automatically call SNAP‘s system to redirect to another active

instance.

SNAP also has a simple Application Management API in which the administrator can

monitor applications via reflection (see which nodes host application instances,

start/stop applications, monitor database use, etc). Nevertheless, these services need to

be further researched and expanded.

For further information on how applications can be adapted, deployed and executed

from within SNAP, please refer to Annex C at the end of this thesis.

146 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

4.6 Empirical Evaluation

We have performed extensive tests on our architecture in order to validate all the

services. As with Dermi, we deployed SNAP in PlanetLab [69]. The PlanetLab testbed

is the perfect environment to simulate real Internet conditions and therefore check

SNAP‘s performance in a wide-area setting.

We concentrated on performing general failover and performance tests. We chose more

than 100 nodes from distinct and varied geographical locations, and performed the tests

at different times of the day to minimize network latency and CPU load effects as much

as possible.

The initial setting was a bunch of empty SNAP nodes, in which an administrator-signed

web application is deployed. After successful deployment, this application is called

from one random node. The static clustering factor is equal to 4, so after initial

activation, 4 replicas are spawned among the node‘s neighbours. The Web application

passivation time was set to 10 minutes, thus guaranteeing non unloading interferences

during the tests.

The deployed application is a simple test which uses the replicated database (inserting

some data, and selecting it back), performs a few calls to SNAP‘s introspection API (to

query for application‘s replica addresses), and counts the time elapsed since the starting

request.

4.6 EMPIRICAL EVALUATION 147

Figure 4.6. SNAP Web application access times

These are two different tests which mainly show web application access times when doing lookups and

direct accesses. Note that initial web application invocation requires much more time (hence the initial

peak), since it needs to activate the required components as well as the database.

Our aim with this experiment was to quantify the overhead imposed in application

lookups, rather than with direct application access. Naturally, we also wanted to

observe SNAP‘s behaviour when dealing with unexpected node failures.

Before going deeper into the results, we should consider that nowadays PlanetLab is a

rather overwhelmed network, which runs constant multiple experiments on most of its

nodes. This is why access times appear to be relatively high, even when web

applications are accessed directly (served by Jetty itself and without SNAP

interferences).

Results of the experiment are shown in Figure 4.6. This figure consists of two charts,

which show different data for the same kind of test, but with different physical nodes.

The idea was to access the snaptestsuite application from different nodes, using lookups

and direct accesses. Results must be read sequentially, and following the specified

series order (1)→(2)→(3), and so on. Since both charts correspond to the same

experiment, but with different node configurations, we shall only comment on the first

one, since the second graph‘s interpretation is basically the same.

Web application access times

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

accesses

m
il

li
s
e
c
o

n
d

s

(1) initial lookup from planetlab6.upc.es (2) direct access to planetlab6.upc.es

(3) lookup from planetlab2.sics.se (4) direct access to planet-lab-1.csse.monash.edu

(5) lookup from planetlab.urv.net (6) direct access to planet1.cs.rochester.edu

Web application access times

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

accesses

m
il
li
s
e
c
o

n
d

s

(1) initial lookup from planetlab6.upc.es (2) direct access to planetlab6.upc.es

(3) lookup from planetlab2.sics.se (4) direct access to planetlab2.cs.wayne.edu

(5) lookup from planetlab1.hiit.fi (6) direct access to planet-lab-1.csse.monash.edu.au

 A

 A

 B

148 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

One thing that both charts have in common is that web application start up for the first

time tends to be relatively high (varying from 102,000 to 130,000 ms), since

components and database must be initialized. This explains the initial peak in series (1)

indicated by A. Note that in the future we will fine tune this initial phase in order to

reduce startup time (we could vary timeout periods, and reduce retransmission delays).

Note that this only happens in the application startup phase and, of course,

subsequent calls to the same web application incur much lower access times.

Subsequent access times in series (1) (from the first chart) correspond to looking up the

web application locally (entering p2p://snaptestsuite.urv.net on SNAP‘s main browser

window). The application was started on planetlab6.upc.es. By looking up the

application, SNAP redirects us to the closest active instance, which in this case is the

one running on the local node. This behaviour incurs a slight overhead, since a DHT

lookup as well as an anycall is done. Mean access time in this case is 857 ms. This can

be observed when looking at series (2), which called the same application on the same

node, but performed a direct call (by entering http://planetlab6.upc.es/snaptestsuite on

our web browser). Mean access times in this case are 488 ms.

The next test (shown in series (3)) involves shutting down SNAP on planetlab6.upc.es.

Naturally, it is now impossible to directly access the application via the web browser on

that node, because it is down, and therefore accesses to the application fail. However, if

we access it by looking up from another SNAP node (again entering

p2p://snaptestsuite.urv.net on SNAP‘s main page – trying it from planetlab2.sics.se),

we are redirected to another active replica (in this case, planet-lab-1.csse.monash.edu).

We again perform continuous lookups, which redirect us to the closest replica (it is

usually planet-lab-1.csse.monash.edu or planetlab2.cs.wayne.edu, or

planetlab1.cs.wayne.edu, or even planetlab2.cs.unc.edu). This shows us that the

underlying p2p routing substrate (in our case FreePastry [40] from Rice University)

performs Proximity Neighbour Selection (PNS) [107], which continuously updates

neighbours according to their latency. Sometimes, access times vary slightly due to

these node changes, as indicated by B, on series (5). Mean invocation access time for

series (3) was approximately 1,790 ms. When accessing planet-lab-1.csse.monash.edu

directly (which was the node that we were redirected to most often, as shown in series

(4)), mean invocation time was 880 ms.

These results are interesting. Notice that users will not normally perform continuous

lookups to work with an application. Using this service, they will be automatically

redirected to an active replica, and work with it, always in direct access times (eg: 880

ms, as seen before). However, when the server or the application stops working, they

can use another SNAP node, and perform an application lookup, which will redirect

them to another consistent instance in an acceptable time (eg: 1,790 ms, as seen

before). This shows not only that SNAP‘s failover mechanisms work, but also that if

nodes fail, we are transparently redirected to the closest copy, which answers in a

relatively short time, and subsequent accesses are performed without overhead.

The last tests involved shutting down SNAP on planet-lab-1.csse.monash.edu, and

moving on to planetlab.urv.net to perform snaptestsuite‘s lookups (series (5)). The

average access time was 3,185 ms (planet1.cs.rochester.edu mainly answered), whereas

direct access times (series (6)) to this node were about 2,143 ms.

http://planetlab6.upc.es/snaptestsuite

4.7 PROSPECTIVE USES OF SNAP 149

As nodes holding applications fail, new ones are populated with active copies of the

application. The total number of replicas stays at around four all the time, thus

guaranteeing failover in case of abrupt or graceful node failures.

Using the PlanetLab testbed, we verified that SNAP does not impose an excessive

access time overhead (the mean normalized incurred overhead is 1.636 (average lookup

time divided by average access time), and only when doing ‗p2p://...‘-style lookups,

which does not happen most of the time (only when an application needs to be

accessed).

It is important to highlight that application location (via ‗p2p://…‘) produces an

overhead due to DHT lookups, and anycalls. However, once you are connected to the

application, performance is good, since access to that local webserver is direct. As a

consequence, this demonstrates that SNAP web applications are scalable.

In conclusion, we have proven that the failover mechanism gives good results because

of the inherent network locality exploited by SNAP.

4.7 Prospective Uses of SNAP

SNAP‘s main aim is to facilitate the migration of typical, lightweight J2EE applications

from traditional client-server models to a wide-area scalable solution. Even though

Dermi and p2pCM primitives can be used by SNAP application developers, a J2EE

application can be deployed with minimal descriptor changes and without touching a

single line of code. Therefore, in this section we outline SNAP‘s future prospective

uses.

One of the most important features of SNAP, which has already been highlighted, is

that it is easy to use. The idea is to facilitate as much as possible the transitioning

process of any client-server based J2EE application to a SNAP application. Therefore,

as we have described, already existing J2EE applications can be easily ported to SNAP

through an easy and automated process of signing and packaging (via the

SNAPDeployer tool), which also creates a new XML deployment descriptor file (snap-

war.xml). The administrator can easily deploy static web application contents in the

SNAP network too, without needing to change a line of code.

When dealing with applications which work with relational databases, we have also

tried to make the transition to SNAP as transparent as possible. Developers can choose

to use direct JDBC connections (thus making slight changes in the way the JDBC

connection is obtained) or DataSources (where they only have to update the

DataSource‘s JNDI name in the application‘s web.xml file), without touching a line of

code.

The idea is to make it easy for developers to use SNAP. In fact, unless they wish to

access native replicated file warehouse features, or p2pCM components, already

existing J2EE applications seamlessly adapt to SNAP with an automatic procedure of

packaging, signature, and deployment.

150 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

One interesting application which can be easily built with SNAP is the decentralization

of the Bittorrent/Suprnova p2p tracker distribution system. This p2p file sharing

system, described in [102], distributes file links in the form of small indexes stored on a

central web application. The fake-file problem can be solved with only 20 moderators

combined with numerous other volunteers. However, system availability is hampered

by the global nature of client/server architecture: when the central web server is

overwhelmed or down, no tracker distribution can occur. If this web application is

implemented using SNAP, load balancing and failover can occur transparently, thus

allowing seamless access to these files all the time, and solving any bottleneck in

Bittorrent‘s tracker distribution.

We foresee other interesting prospective applications that could benefit from these

services in the near future. Such application-domain examples include:

 Enterprise wide-area collaboration. This application domain is currently one

of industry‘s main areas of interest. Groove‘s [24] acquisition by Microsoft

Corporation shows that this interest is growing. When wide-area applications

need to be developed for this area, it is not easy to use existing frameworks to

adapt already built client-server applications. In SNAP, there is no painful

transition, since J2EE compatible applications can easily be deployed without

any change.

Moreover, when all of the p2p network‘s potential needs to be exploited, we can

use SNAP‘s p2p-API service, which enables Dermi‘s call abstractions (anycall,

multicall, …), and p2pCM components to be used.

Other applications which can be developed in this domain also include the

typical file-sharing ones or even instant messaging.

 Wikis, weblogs, and static webpages. Another domain which could greatly

benefit from SNAP‘s infrastructure is that of weblogs, wikis or even static

webpages. Normally these applications do not have excessive requirements and

are relatively lightweight. We could even reuse existing applications and deploy

them onto SNAP. Why could this be interesting? From a failover point of view,

if the central server fails, the application becomes unreachable. Using SNAP,

users would be redirected to another active instance, and thus still be able to

work with the application. From a load balancing point of view, the same node

would not always receive the requests: they would be distributed throughout the

active application replicas. Finally, from a network proximity point of view, the

replica which you would be redirected to, would be your closest instance in

terms of network latency.

These applications could also be extended, if necessary, by storing and retrieving

relevant information onto the DHT. They could use our DHT‘s inverted list

functions (provided by Bunshin and accessible via Dermi and p2pCM) to store

and retrieve keywords, for example. Therefore, scalability is guaranteed, since

these keywords are disseminated and replicated throughout the network without

having a single point of failure, as found in client-server models.

4.7 PROSPECTIVE USES OF SNAP 151

 Service Oriented Architecture (SOA) applications. Web services are an

emerging paradigm these days. We believe that this concept can also be applied

in wide-area p2p environments. In fact, SOA is an architectural style whose goal

is to achieve loose coupling among interacting software agents. In this case, a

service is a unit of work done by a service provider to achieve desired end

results for a service consumer. Both provider and consumer are roles played by

software agents on behalf of their owners.

In fact, p2pCM components could easily be extended to become web services.

As a consequence, we are currently working on an XML-RPC façade to provide

access to these components via HTTP and XML. Future applications will be

built on top of these web services, and provide access to a wide-area service

oriented architecture.

This research line is part of SNAP‘s future development and needs to be further

investigated.

 Collaborative Edge Services. On top of the SNAP edge application

infrastructure, and using SNAP‘s edge services, we plan to construct a set of

Collaborative Edge Services that will help to create p2p environments in a

decentralized setting. These services are the following:

 User and Profile Management: Using the replicated persistence service on

top of the DHT, we are creating a p2pCM component that securely stores

user information. The use of login/password or certificates thus guarantees

authenticated access to personal user resources and information.

Furthermore, a user will be able to store public keyword information in

his/her personal profile, and this information is properly stored in the DHT

(as inverted lists) in order to enable efficient queries over those keywords.

This profile management service is very important for the p2p Community

Service, which we will present later in this section. Finally, the user

interface for this p2p User and Profile management service is a Java Web

application that must be deployed over a SNAP network.

 p2p Workspaces: We have constructed a J2EE Web application that also

benefits from SNAP‘s file replication mechanisms to upload or retrieve

contents from shared folders. The owner of a workspace can thus invite other

members and permit joint collaboration over the shared knowledge. In order

to access the p2p Workspace service, the user must acquire an identity in the

SNAP network by means of the previous User and Profile Management

service. At this stage, we only permit files to be shared in shared

workspaces, but we also plan to define an extensible artifact contract like the

Groove‘s Tools extensions.

 p2p Domain Name System: Inside a SNAP network, we can locate resources

using p2p URLs like: p2p://www.urv.net or p2p://carles.pairot@urv.net. The

assignment of p2p URLs to deployed applications and resources is the

responsibility of the SNAP network administrator. Using a Web interface

152 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

(p2p Domain Name System), the administrator can thus assign p2p URLs

and domains to requested applications of users inside the network. Note that

SNAP is a controlled and secure p2p environment that can be managed by a

company or online community. Only the private key of the SNAP‘s network

administrator permits access to this p2p Domain Name System.

 Bidirectional Hyperlink system: This application allows users to create p2p

links (p2p://objectweb.org) to resources and applications found in the SNAP

network. The relevance of this service is that p2p links are stored in the DHT

persistence system with both source and destination. Furthermore, our APIs

show the number of incoming and outgoing links for a URL and also online

notification of new established links. Therefore, we can easily find out how

many links point to my p2p URL (p2p://carles.pairot@urv.net), and retrieve

them to know who connects to me, but also find out in real time if someone

creates a link to my p2p resource. This hyper linking system is a valuable

resource that contains graph information of the social networks and

communities in the overlay.

 Community Service: Finally, this service is our query engine over the

information contained in the overlay. Using the information stored in the

DHT by the User Profile Service, the p2p Hyperlink system, and the tagged

resources (with keywords), the Community Service allows advanced

searches of the existing collaboration communities. We can thus search a

community using keywords, and find users with similar interests. We can

also rank the results of a query using incoming links to that resource as a

metric (similar to Google‘s PageRank [22]). We believe that this service is

very important for obtaining introspection information of the network, but

also to boost user collaboration and the creation of communities around

keywords.

We consider that all these services can help to build p2p collaboration

communities that benefit from edge services in the network. An enterprise can

cheaply create a professional community with advanced tools for online

collaboration. The data and computing resources of the community do not reside

in expensive central servers, but instead are replicated over desktop machines or

if necessary some dedicated backbone server.

Furthermore, when the J2EE standard is used the environment is open source

and extensible, so existing web applications can be deployed without problems.

A company can then offer their subscribers free web pages in the p2p network,

free blogs or forums, or even mix centralized and edge deployed applications.

Another scenario in which SNAP‘s can be used is in highly concurrent systems relying

on ordered synchronization between multiple users (such as that found in games or

highly collaborative systems). By using the distributed interception feature in our

Dermi object middleware, we can provide transactional support, and allow user

synchronization.

4.8 SUMMARY 153

We wish to make it clear that SNAP is targeted to the development and deployment of

lightweight applications. Therefore, for example, it is not targeted to applications

relying on large back-end databases, because it would be infeasible to copy and

synchronize large databases to the p2p clients.

4.8 Summary

In this chapter, we have presented a proof-of-concept for our prototype wide-area

middleware implementation: the SNAP framework. SNAP provides seamless J2EE-

compatible applications that are scalable and accessible from a wide-area p2p

environment. We have presented SNAP‘s main features which include easy adaptation

of already existing J2EE applications to our framework, secure and decentralized

web application deployment, and finally transparent benefit from embedded

services like persistence, load balancing, fault tolerance, and edge computing.

It is important to note that when talking about J2EE-compatible applications, we

exclude those which deal with Enterprise JavaBeans (EJBs). EJBs are heavyweight

components which would not be deployed efficiently due to the heterogeneity of the

nodes‘ computing power, bandwidth, and resources.

SNAP was validated on the PlanetLab testbed, and we proved that our framework‘s

approach is viable and that the system performs acceptably. SNAP can be downloaded

at http://snap.objectweb.org, under a LGPL license. Moreover, we are continuing to

improve SNAP and include more useful features.

We have taken the first step in preventing unauthorized application tampering by

deploying administrator-signed web applications. Naturally, we need to continue

investigating further in order to reduce future potential security threats. We believe that

in the coming years, structured p2p networks will continue to evolve, and security is a

crucial aspect if these technologies are to take off completely.

We are also researching the way to fine tune the clustering algorithm so that it is not as

static as it is now. The idea is to dynamically spawn replicas that depend on the

application‘s load. Besides, these replicas can be activated near the overwhelming nodes

so as to reduce overall load impact.

In addition, we are researching new forms of web services which can provide a new

view of the SOA arena. Since SNAP components can easily be transformed into web

services, we can apply new concepts to this field. These web services can be inserted in

the DHT and located without depending on a centralized naming service. Moreover,

whenever invoking them, we could use SNAP‘s locality functions to invoke the nearest

web service, thus having locality-aware web services. New approaches could include

fault tolerant or locality-aware web services, which would benefit from the underlying

routing substrate‘s inherent properties.

Finally, we believe that for this kind of wide-area networks to be successful, an

essential aspect is users‘ critical mass. The more potential users are attracted, the more

the aggregated services and, as a consequence, the network runs significantly better,

http://snap.objectweb.org/

154 CHAPTER 4. APPLICATIONS OF OUR MIDDLEWARE: SNAP

with more services, and more added value. SNAP was accepted by the ObjectWeb

Middleware Consortium to be one of its projects [http://snap.objectweb.org]. With this

acceptance, and its immediate official deployment on the PlanetLab testbed, we believe

that SNAP has the potential to attract users, and that it can be a suitable foundation for

the future development of scalable enterprise collaboration, and fault tolerant distributed

wide-area web applications.

4.8 SUMMARY 155

156

Chapter Five

5 Conclusions and Future Work

5.1 Conclusions

The development of a wide-area middleware platform is a complex task. In this thesis

we have analyzed already existing solutions which try to accomplish this objective, and

we have stated that none of them elegantly achieves their goal. For a wide-area

middleware platform to be successful, we believe it should fulfill a set of stated

requirements. In our prototype implementation, we have opted for structured p2p

overlay networks. However, our ideas are not restricted to this underlying level

substrate functionalities. They aim to be generic enough so that they can be applied to

any decentralized underlying substrate solution.

 Scalability. A Wide-Area Middleware framework must be based on a scalable

substrate for efficient message routing. Structured peer-to-peer overlay networks

provide an efficient and scalable message routing substrate. Therefore,

communication between decentralized nodes is efficient and follows a Key-

Based Routing scheme, in which a specified key,value pair is efficiently mapped

to a particular node, in the form of a giant distributed hash table (DHT).

 Fault tolerance and high availability. These requirements are fulfilled by our

middleware proposal, since it provides transparent mechanisms for data access

and replication. Any objects or components (and even web applications, when

using SNAP), can be automatically replicated and its state transparently

maintained by our middleware. This way, once a node housing any object or

component becomes unavailable, the closest one takes its place, by means of a

transparent internal anycall invocation.

 Load balancing. Our middleware provides two different load balancing

mechanisms. One is based on the distributed interception feature, and the other

one is based on the anycall abstraction. Both of them are complementary and

may be used in different scenarios. This service is also available to application

developers, which may declaratively specify which load balancing scheme they

wish to utilize for their objects, components, and applications.

5.1 CONCLUSIONS 157

 Dynamicity. Heterogeneous and very different types of nodes may constantly

join and leave the overlay network. In this case, the overlay network

transparently manages node departures and arrivals for us. Once a node joins the

network, it acquires responsibilities (that is to say, it is given key-pair values to

store), and once a node leaves or disconnects abruptly, its replicated values are

redistributed among the remaining participating nodes.

 Use of the resources on the edges of the Internet. The idea is to make good

use of all the scattered and unused resources of any of the peers forming the

network. Since it is a peer-to-peer decentralized network, all members are

treated as equals and, therefore, they can all contribute resources to their

conforming network. As a consequence, storage and network bandwidth is

shared between all participants, since they have to hold state and replication

data, and also permit messages to be routed (and forwarded) through them.

 Usability and Programming Abstractions. Our middleware has been designed

with usability in mind. Therefore, our prototype implementation has been

specially architected following the ease-of-use directive. Thus, it is very easy to

develop new objects, components, and applications on top of Dermi, p2pCM,

and SNAP respectively. The use of Java annotations enormously facilitates

method tagging for specifying desired features and attributes. Moreover, by

using dynamic proxies, developers remain unaware of what occurs behind the

scenes. Usability comes at its maximum level in the form of SNAP, which

merges all the concepts of our middleware, and applies them to J2EE

infrastructures. As a consequence, development and/or adoption of new/existing

J2EE applications is a very simple matter, for the experienced Java programmer.

Moreover, our middleware solution provides developers with a set of

programming abstractions which allow for rich distributed application

development primitives. We provide remote objects and components, a

decentralized naming service, efficient and innovative group communication

primitives, etc.

We have demonstrated that our wide-area middleware proposal complies with all due

requirements. Other wide-area middleware approaches lack some or many of these

requirements, making them difficult to use, since many services are not implicitly

provided or are even non-existent. Moreover, our proposal is, to the best of our

knowledge, the first to envision a wide-area middleware framework based on a

structured peer-to-peer overlay network.

As a result of this set of requirements, we believe that such a middleware platform must

be sustained on top of the already presented wide-area routing substrate, as well as an

application-level multicast infrastructure, and a decentralized persistence service.

The second layer makes efficient one-to-many communication possible, and also

enables proximity-aware anycast/manycast primitives such as anycall/manycall to be

used. The third layer makes it possible to store any object/component/application data

efficiently, and in a fault tolerant way, throughout the network.

By using this three-layered architecture for our middleware model, we have achieved

the following objectives:

158 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

 We have defined a generic architecture middleware model made up of these

three layers which provides a set of generic common services. This model is

generic enough for it to be applied to different software designs.

 We have analyzed the state of the art in each of our middleware proposal‘s core

layers, and by comparing them to already existing wide-area middleware

solutions, we have observed that none of them provides wide-area application

developers with enough services.

 We have designed and materialized this generic proposed model by means of

two complementary middleware approaches: remote objects and distributed

reusable components. The remote object layer provides the component layer

with the foundations and most important innovative services. This component

layer allows the lightweight components to be defined and deployed. These

components can later be reused to provide a higher level of abstraction so that

wide-area distributed applications can be composed.

 In the context of our remote object middleware, we have defined a new set of

remote object invocation abstractions. Therefore, we provide the

traditionally existing object-to-object (one-to-one) remote method

invocations, as well as object-to-objects (one-to-many) calls by using a wide

area application-level multicast communications bus. If this underlying

information bus also provides us with network proximity-aware primitives

like anycast, we can also provide the anycall and manycall abstractions. We

have also defined a special set of fault tolerant calls, namely hopped calls.

 We have defined a decentralized object location service. This service allows

remote objects / components / applications to be located and inserted into our

decentralized generic model, by storing data on the persistence layer.

 We have also outlined a distributed interception service. By means of the

underlying information bus, we provide primitives that can easily intercept

remote object calls, similar to Aspect Oriented Programming (AOP)

techniques. Therefore, invocations to remote objects can be captured,

analyzed, transformed, and even discarded.

 Our remote object middleware also provides wide-area load balancing by

using interceptors or the anycall abstraction. Both schemes are

complementary and target different use cases, providing the load balancing

requirement with enough genericity and flexibility.

 When defining our wide-area component model, we have adopted a

decentralized lightweight container model. Distributed components are

therefore modelled as remote objects, including a life cycle service, and a

decentralized deployment and location service.

 Finally, we have presented a proof of concept implementation which directly

benefits from the underlying framework services. This proof of concept is called

SNAP, and it consists of a wide-area application deployment service. SNAP

provides application developers with fault tolerance, persistence, interoperability

5.2 FUTURE WORK 159

via web services, clustering, and other services. This application of our

middleware serves to demonstrate its practical viability and its usability.

We have designed a prototype implementation of both the remote object middleware

(Dermi), and the reusable component framework (p2pCM). We have performed

simulations of our middleware components, and have demonstrated the viability of

these prototypes by means of empirical evaluations on top of the PlanetLab testbed.

Since the PlanetLab network models the behaviour of the real conditions in the Internet

network, the results obtained can be extrapolated to a wide-area changing environment.

Therefore, we have demonstrated that our middleware incurs an acceptable overhead

and that invocations to Dermi objects and p2pCM components, as well as SNAP

applications, are efficient.

We believe that this wide-area middleware proposal is the first step in providing a

solution that will ease the complex task of developing wide-area scale distributed

applications. Structured peer-to-peer overlay networks are of particular interest because

we believe that, in a near future, such networks will start expanding exponentially.

There are in fact many examples of such networks that are already working (e.g. eMule

Kad and BitTorrent DHT. However, we believe that the future of p2p remains in this

research line. Many more services still require further research.

5.2 Future Work

In this research, we have aimed to propose a wide-area middleware framework that is

generic enough to be used in any of the decentralization paradigms available. Therefore,

we think that our ideas are applicable independently of the underlying infrastructure.

We expect this work to be continued in the future, and hope that these ideas can be

exploited in different application domains.

In particular, we believe that this thesis opens the way for two lines of future work. The

first one is based on our p2pWeb model, the main aim of which is to provide service

oriented architectures with innovative features. The second one involves the creation of

a wide-area autonomic computing infrastructure for supporting self-adjusting

applications on a global scale.

5.2.1 The p2pWeb Model

We foresee promising cross-fertilizations of peer-to-peer and Web models in the

coming years. Although both models are already influencing each other, the lack of

seamless integration between them makes it difficult to achieve constructive synergies.

Therefore, we have proposed the p2pWeb model, which provides decentralized

solutions for service description, publication, discovery and availability, following the

web services standards.

Our p2pWeb model aims to bring all the benefits and unused resources of the edges of

the Internet to the mature and standardized world of Web applications and services.

160 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

As a consequence of this thesis, research into integrating p2p and the Web has been

initiated. Naturally, some problems need to be tackled:

 A new Service Oriented Architecture (SOA) needs to be defined that is

suitable for the p2pWeb scenario. The idea is to provide seamless access to

applications and components through open standards such as web services.

 Web services must be integrated into a p2pWeb network. Web service

access mechanisms which benefit from the underlying invocation

abstractions introduced in this thesis should be studied. Therefore, web

services could benefit from the p2p layer primitives, and proximity aware

web services, for example, could be provided. In this way, we can achieve

interoperability between other heterogeneous platforms and programming

languages.

 Transparent location, load balancing and fault tolerance for p2p web

services. Since we are based on a p2pWeb network, web service location

should be decentralized, and fault tolerant: if we wish to invoke a particular

service, we should obtain a reference to the appropriate instance, even if

there are overwhelmed or failed nodes.

We believe that all the features of our p2pWeb model can be of special interest for the

creation of communities, and for the development of future collaborative decentralized

applications. With the addition of a service oriented architecture for wide-area access,

our platform could benefit from interoperability and the addition of new services which

take into account the whole network‘s inherent properties.

5.2.2 Peer-to-Peer Middleware for providing Autonomic Computing

A concept that is emerging as a very interesting research topic is Autonomic Computing.

Autonomic Computing was an initiative started by IBM in 2001. Its ultimate aim is to

create self-managing computer systems to overcome their rapidly growing complexity

and to enable them to grow further.

In any autonomic system, the human operator takes on a new role by not controlling the

system directly. Instead, a set of general policies and rules serve as input for the self-

management process. For a system to be considered to be autonomic, it must be self-

configurable, meaning that it must allow for automatic configuration of components;

self-healing, meaning it should provide automatic discovery, and correction of faults;

self-optimizing, meaning that resources should be automatically monitored and

controlled to ensure the optimal functioning; and, finally, self-protecting, meaning that

it must allow proactive identification and protection from arbitrary attacks.

Designing an autonomic system is a complex task. It is even more complex if a wide-

area autonomic computing system is to be designed. To the best of our knowledge, at

present there are no wide-area autonomic computing systems, so this is an area for

further research.

5.2 FUTURE WORK 161

By linking autonomic computing systems with the concepts presented throughout this

thesis, we believe that the p2p middleware services we have been describing could be

used in the development of a wide-area autonomic system. This research line, then, is

very ambitious since its main aim would be to provide the basis for a wide-area

autonomic infrastructure within which we could design and deploy autonomic systems,

by defining rules and policies. This infrastructure should be able to cope with

dynamicity, scalability and reliability. Dynamicity is an important requirement for this

system, since it should be adaptable to constant network node joins/leaves, and also

allow runtime policy addition and removal.

In software engineering, the programming paradigm of aspect-oriented programming

(AOP), also called aspect-oriented software development (AOSD), attempts to help

programmers separate concerns, or break down a program into different parts that

overlap in functionality as little as possible. In particular, AOP focuses on the

modularization and encapsulation of crosscutting concerns. We believe AOP techniques

can be used to achieve our wide-area autonomic computing infrastructure goal by

intercepting existing code and allowing dynamic adaptations.

This research line follows on from the work initiated by this thesis, since our

contributions can serve as the core substrate on which a wide-area autonomic computing

framework can be developed.

162 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

163

Chapter Six

6 Publications

In this Chapter we outline all the publications related to this thesis. Our publications

vary from national and international conference proceedings as well as national and

international publications in journals and magazines.

6.1 Dermi Remote Object Middleware

 C. Pairot, P. García, and A. F. Gómez Skarmeta. Wide-Area Middleware: The

Need for a New Layer. Internal Research Report. Departament d'Enginyeria

Informàtica i Matemàtiques. DEIM-RR-03-005. April 2003.
 In this paper, we focus on event-based systems and describe several of them that have

been proposed in recent literature. We analyze their features, and propose a new wide-

area middleware layer to solve the shortcomings encountered.

 C. Pairot, P. García, A. F. Gómez Skarmeta, R. Rallo, and R. Mondéjar.

DERMI: Middleware para aplicaciones de trabajo en grupo descentralizadas.

Jornadas Técnicas RedIRIS 2003, Palma de Mallorca, Spain, November 2003.

ISSN 1139-207X.
 In this article, we present our first outline of Dermi, a middleware for the development

of decentralized workgroup applications, built on top of a peer-to-peer network
modelling a distributed hash table. Dermi provides numerous services, such as

synchronous and asynchronous remote method invocations, decentralized object

location, object mobility, distributed interception and two new invocation abstractions,

namely anycall and manycall.

 C. Pairot, P. García, and A. F. Gómez Skarmeta. Towards a Peer-to-Peer Object

Middleware for Wide-Area Collaborative Application Development. Workshop

Trabajo en Grupo y Aprendizaje Colaborativo: experiencias y perspectivas. X

Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA

2003. Donostia, Spain, November 2003.
 In this paper, we focus on the collaborative perspective of building Dermi applications.

We analyze and propose how Dermi‘s abstractions can be used to build wide-area

collaborative services.

164 CHAPTER 6. PUBLICATIONS

 C. Pairot, P. García, and A. F. Gómez Skarmeta. Dermi: A Decentralized Peer-

to-Peer Event-Based Object Middleware. Proceedings of the 24th IEEE

International Conference on Distributed Computing Systems (ICDCS 2004).

Tokyo, Japan. March 2004, pp. 236 - 243. ISSN: 1063-6927. ISBN: 0-7695-

2086-3. Acceptance Rate: 17.7%.
 In this paper, we present Dermi and describe all its services, which include anycall and

manycall abstractions, the distributed interception service, and the decentralized object

location service.

 C. Pairot, P. García, and A. F. Gómez Skarmeta. Dermi: A New Distributed

Hash Table-based Middleware Framework. IEEE Internet Computing Magazine.

Vol 8, No. 3, May/June 2004, pp. 74-84. ISSN: 1089-7801.
 In this article, we further explore Dermi‘s services, and present simulation results and

empirical evaluations which demonstrate the viability of our approach.

 C. Pairot, P. García, A. F. Gómez Skarmeta, and R. Mondéjar. Achieving Load

Balancing in Structured Peer-to-Peer Grids. Lecture Notes in Computer Science

(LNCS) Volume 3038. 4th International Conference on Computational Science

(ICCS 2004). 1st International Workshop on Active and Programmable Grid

Architectures and Components (APGAC 2004). Kraków, Poland. June 2004, pp.

98-105. ISSN: 0302-9743. ISBN: 3-540-22116-6.
 In this paper, we introduce the concept of a structured peer-to-peer grid and present our

contribution to this new world by means of Dermi. In addition, we focus on the design

and implementation of a load balancing facility by using the functionalities provided by

this middleware. We present two different approaches to achieve load balancing in our

system: a completely decentralized solution by using the anycall abstraction, and a

distributed interceptor-based one. Both of them can be used in a wide variety of

scenarios, depending on needs.

 C. Pairot, P. García, R. Mondéjar, and A. F. Gómez Skarmeta. Towards a Peer-

to-Peer Object Middleware for Wide-Area Collaborative Application

Development. Revista Iberoamericana de Inteligencia Artificial. Vol. 8, No. 24,

Winter 2004, pp. 55-65. ISSN: 1137-3601.
 In this article, we further extend the collaborative capabilities Dermi offers to the

development of wide-area CSCW applications.

 C. Pairot, P. García, A. F. Gómez Skarmeta, and R. Mondéjar. Towards New

Load-balancing Schemes for Structured Peer-to-Peer Grids. Future Generation

Computer Systems - The International Journal of Grid Computing: Theory,

Methods and Applications. Vol. 21, January 2005, pp. 125-133. ISSN: 0167-

739X.
 In this article, we elaborate on the decentralized load balancing mechanisms of Dermi,

and validate our approach by means of simulations.

6.2 p2pCM Component-Based Middleware

 C. Pairot, P. García, R. Mondéjar, and A. F. Gómez Skarmeta. p2pCM: A

Structured Peer-to-Peer Grid Component Model. Proceedings of the 5th

International Conference on Computational Science. 2nd International

Workshop on Active and Programmable Grid Architectures and Components.

Lecture Notes in Computer Science (LNCS), Volume 3516. Atlanta, USA, May

2005. ISSN: 0302-9743. ISBN: 3-540-26044-7.

 165

 In this paper we present p2pCM, a new distributed component-oriented model aimed to

structured peer-to-peer grid environments. Our model makes innovative contributions

such as a lightweight distributed container model, an adaptive component activation

mechanism, which takes into account network proximity, and a decentralized

component location and deployment service.

 C. Pairot, P. García, R. Mondéjar, and A. F. Gómez Skarmeta. Building Wide-

Area Collaborative Applications on top of Structured Peer-to-Peer Overlays.

Proceedings of the 14th IEEE International Workshops on Enabling

Technologies: Infrastructures for Collaborative Enterprises (WETICE-2005).

Linköping, Sweden, June 2005, pp. 350-355. ISSN: 1524-4547. ISBN: 0-7695-

2362-5. Workshop's Best Paper and Presentation Award.
 In this paper we elaborate on p2pCM. We focus on how the services provided by

p2pCM can be used to implement essential computer-supported cooperative work

(CSCW) services, such as shared session management, awareness and coordination

policies, and show a sample application. We believe that all of the features our

component-oriented model provides can be very promising for the development of

future wide-area distributed CSCW applications.

6.3 PlanetDR and SNAP

 C. Pairot, P. García, R. Rallo, J. Blat, and A. F. Gómez Skarmeta. The Planet

Project: Collaborative Educational Content Repositories on Structured Peer-to-

Peer Grids. Proceedings of the 5th ACM/IEEE International Symposium on

Cluster Computing and the Grid (CCGrid 2005). Second International

Workshop on Collaborative and Learning Applications of Grid Technology and

Grid Education (CLAG + Grid.edu 2005). Cardiff, United Kingdom, May 2005,

pp. 35-42. ISBN: 0-7803-9074-1. Acceptance Rate: 50%.
 In this paper we present the Planet Project. Its main goal is the generation of

educational content and wide-area distribution. In this respect, we present a distributed

content repository (PlanetDR) which has been built on top of Dermi. PlanetDR follows

the IMS Digital Repositories Interoperability standard through an implementation of the

eduSource Communication Language (ECL) protocol. PlanetDR has been extended to

support a federation mode, which to the best of our knowledge is the first attempt to

provide an alliance of content repositories throughout a structured peer-to-peer grid.

Moreover, several collaborative tools are presented, which will be integrated in the

content‘s life cycle in order to promote knowledge communities around educational

content hierarchies.

 R. Mondéjar, P. García, C. Pairot, and A. F. Gómez Skarmeta. Towards a

Decentralized p2pWeb Service Oriented Architecture. Proceedings of the 15th

IEEE International Workshops on Enabling Technologies: Infrastructures for

Collaborative Enterprises (WETICE-2006). Manchester, England, June 2006.
 In this paper, we present the p2pWeb service oriented architecture (SOA). The p2pWeb

model offers decentralized solutions for service description, publication, discovery and

availability, following the web services standards. The three innovative contributions in

p2pWeb SOA are: easy integration of web services into a p2pWeb network, secure and

decentralized web services deployment, and transparent location, load balancing and

fault-tolerance p2p mechanisms.

166 CHAPTER 6. PUBLICATIONS

 C. Pairot, P. García, and R. Mondéjar. Deploying Wide-Area Applications is a

Snap. IEEE Internet Computing Magazine. Vol. 11, No. 2, March/April 2007,

pp. 72-79. ISSN: 1089-7801.
 In this article, we present the Structured overlay Networks Application Platform (Snap):

a J2EE-compatible wide-area Web application deployment infrastructure. Due to its

structured peer-to-peer overlay network substrate, Snap offers three benefits to wide-

area Web application deployment: easy adaptation of existing J2EE applications to a

scalable network, a secure and decentralized deployment environment, and transparent
embedded services, such as persistence, load balancing, fault tolerance, and edge

computing.

 167

168

Chapter Seven

7 References

[1] ActiveGrid Grid Application Server, available at http://www.activegrid.com.

Access Date: 2006-05-30.

[2] AgentCities, available at http://www.agentcities.org. Access Date: 2005-05-05.

[3] Akamai EdgeComputing Service, available at

http://www.akamai.com/en/resources/pdf/brochures/Akamai_EdgeComputing_S

ervice_Brochure.pdf. Access Date: 2006-05-30.

[4] Apache HTTP Server Project, available at http://httpd.apache.org/. Access Date:

2006-08-15.

[5] Apache Tomcat, available at http://tomcat.apache.org/. Access Date: 2006-08-

15.

[6] Apache XML-RPC Libraries, available at http://ws.apache.org/xmlrpc/. Access

Date: 2006-08-15.

[7] Architecture and Telematic Services Research Group at Universitat Rovira i

Virgili, available at http://www.etse.urv.cat/recerca/ast/. Access Date: 2006-05-

31.

[8] Arecibo Observatory - National Astronomy and Ionosphere Center, available at

http://www.naic.edu/. Access Date: 2006-08-15.

[9] AudioGalaxy, available at http://www.audiogalaxy.com/. Access Date: 2006-05-

29.

[10] BearShare Gnutella Client, available at http://www.bearshare.com/. Access

Date: 2006-08-15.

http://www.activegrid.com/
http://www.agentcities.org/
http://www.akamai.com/en/resources/pdf/brochures/Akamai_EdgeComputing_Service_Brochure.pdf
http://www.akamai.com/en/resources/pdf/brochures/Akamai_EdgeComputing_Service_Brochure.pdf
http://httpd.apache.org/
http://tomcat.apache.org/
http://ws.apache.org/xmlrpc/
http://www.etse.urv.cat/recerca/ast/
http://www.naic.edu/
http://www.audiogalaxy.com/
http://www.bearshare.com/

 169

[11] Berkeley Open Infrastructure for Network Computing (BOINC), available at

http://boinc.berkeley.edu/. Access Date: 2006-05-29.

[12] Bittorrent, available at http://www.bittorrent.com/. Access Date: 2006-05-29.

[13] Condor: High Throughput Computing, available at

http://www.cs.wisc.edu/condor/. Access Date: 2006-08-25.

[14] DataSynapse: Virtual Application Infrastructure Software, available at

http://www.datasynapse.com/. Access Date: 2006-08-25.

[15] eMule Project, available at http://www.emule-project.net/. Access Date: 2006-

05-29.

[16] Folding@home Distributed Computing, available at http://folding.stanford.edu/.

Access Date: 2006-08-15.

[17] The Foundation for Intelligent Physical Agents, available at

http://www.fipa.org/. Access Date: 2006-05-30.

[18] Freenet: The Free Network Project, available at http://freenet.sourceforge.net/.

Access Date: 2006-08-15.

[19] The GISP Project, available at http://gisp.jxta.org/. Access Date: 2006-08-15.

[20] Gnucleus - Gnutella client, available at http://www.gnucleus.com/. Access Date:

2006-08-17.

[21] Gnutella.com, available at http://www.gnutella.com/. Access Date: 2006-05-29.

[22] Google Technology, available at http://www.google.com/technology/. Access

Date: 2006-08-29.

[23] GRID.ORG's Cancer Research Project, available at

http://www.grid.org/projects/cancer/. Access Date: 2005-05-29.

[24] Groove, available at http://www.groove.net/. Access Date: 2006-05-29.

[25] GroupKit, available at http://www.groupkit.org/. Access Date: 2006-05-29.

[26] HSQLDB Database, available at http://hsqldb.org. Access Date: 2006-05-29.

[27] IBM Solutions Grid for Business Partners: Helping IBM Business Partners to

Grid-enable applications for the next phase of e-business on demand, available

http://boinc.berkeley.edu/
http://www.bittorrent.com/
http://www.cs.wisc.edu/condor/
http://www.datasynapse.com/
http://www.emule-project.net/
http://folding.stanford.edu/
http://www.fipa.org/
http://freenet.sourceforge.net/
http://gisp.jxta.org/
http://www.gnucleus.com/
http://www.gnutella.com/
http://www.google.com/technology/
http://www.grid.org/projects/cancer/
http://www.groove.net/
http://www.groupkit.org/
http://hsqldb.org/

170 CHAPTER 7. REFERENCES

at http://www-304.ibm.com/jct09002c/isv/marketing/emerging/grid_wp.pdf.

Access Date: 2006-08-15.

[28] Jetty WebServer, available at http://jetty.mortbay.org/jetty. Access Date: 2006-

05-29.

[29] Jini Extensible Remote Invocation (JERI) Application Programming Interface,

available at

http://java.sun.com/products/jini/2.1/doc/specs/api/net/jini/jeri/package-

summary.html. Access Date: 2006-08-15.

[30] JxtaJeri, available at http://user-

wstrange.jini.org/jxtajeri/JxtaJeriProgGuide.html. Access Date: 2004-04-20.

[31] LimeWire, available at http://www.limewire.com. Access Date: 2006-08-15.

[32] Microsoft Corporation's COM: Component Object Model Technologies,

available at http://www.microsoft.com/com/default.mspx. Access Date: 2006-

05-29.

[33] Mnet, available at http://en.wikipedia.org/wiki/Mnet. Access Date: 2006-08-15.

[34] Napster, available at http://www.napster.com/. Access Date: 2006-05-29.

[35] Object Management Group's CORBA Component Model, available at

http://www.omg.org/technology/documents/formal/components.htm. Access

Date: 2006-05-29.

[36] Object Management Group's CORBA Website, available at

http://www.omg.org/corba. Access Date: 2006-05-29.

[37] Open Grid Services Architecture (OGSA), available at

http://www.globus.org/ogsa/. Access Date: 2006-05-30.

[38] The Peer-to-Peer Sockets Project, available at http://p2psockets.jxta.org. Access

Date: 2006-08-15.

[39] Project JxTA, available at http://www.jxta.org/. Access Date: 2006-05-29.

[40] Rice University's FreePastry, available at http://freepastry.rice.edu/. Access

Date: 2006-05-29.

[41] SETI@home, available at http://setiathome.berkeley.edu/. Access Date: 2006-

05-29.

http://www-304.ibm.com/jct09002c/isv/marketing/emerging/grid_wp.pdf
http://jetty.mortbay.org/jetty
http://java.sun.com/products/jini/2.1/doc/specs/api/net/jini/jeri/package-summary.html
http://java.sun.com/products/jini/2.1/doc/specs/api/net/jini/jeri/package-summary.html
http://user-wstrange.jini.org/jxtajeri/JxtaJeriProgGuide.html
http://user-wstrange.jini.org/jxtajeri/JxtaJeriProgGuide.html
http://www.limewire.com/
http://www.microsoft.com/com/default.mspx
http://en.wikipedia.org/wiki/Mnet
http://www.napster.com/
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/corba
http://www.globus.org/ogsa/
http://p2psockets.jxta.org/
http://www.jxta.org/
http://freepastry.rice.edu/
http://setiathome.berkeley.edu/

 171

[42] Sharman Networks' KaZaA, available at http://www.kazaa.com/. Access Date:

2006-05-29.

[43] Skype, available at http://www.skype.com. Access Date: 2006-08-15.

[44] SpamWatch: A Peer-to-Peer Spam Filtering System, available at

http://www.cs.berkeley.edu/~zf/spamwatch/. Access Date: 2006-08-15.

[45] StreamCast Networks' Morpheus, available at http://morpheus.com/. Access

Date: 2006-05-29.

[46] Sun Microsystems' Java Enterprise Edition (Java EE), available at

http://java.sun.com/javaee/. Access Date: 2006-05-29.

[47] Sun Microsystems' Java Remote Method Invocation (Java RMI), available at

http://java.sun.com/products/jdk/rmi/. Access Date: 2006-05-29.

[48] Sun Microsystems' Jini Network Technology, available at

http://www.sun.com/software/jini/. Access Date: 2006-05-29.

[49] Request For Comments (RFC) 1 - Host Software, available at

http://www.faqs.org/rfcs/rfc1.html. Access Date: 2006-05-29.

[50] Request For Comments (RFC) 1094 - NFS: Network File System Protocol

Specification, available at http://www.ietf.org/rfc/rfc1094.txt. Access Date:

2006-08-16.

[51] Request For Comments (RFC) 1112 - Host Extensions for IP Multicasting,

available at http://www.ietf.org/rfc/rfc1112.txt. Access Date: 2006-08-15.

[52] Request For Comments (RFC) 2518 - HTTP Extensions for Distributed

Authoring -- Web-based Distributed Authoring and Versioning (WebDAV),

available at http://www.ietf.org/rfc/rfc2518.txt. Access Date: 2006-08-15.

[53] Request For Comments (RFC) 2526 - Reserved IPv6 Subnet Anycast Addresses,

available at http://www.ietf.org/rfc/rfc2526.txt. Access Date: 2006-08-15.

[54] Microsoft's .NET Framework, available at

http://msdn.microsoft.com/netframework/. Access Date: 2006-08-15.

[55] C. Adam and R. Stadler, "Implementation and Evaluation of a Middleware for

Self-Organizing Decentralized Web Services," in IEEE SelfMan 2006, 2006.

[56] Free Riding on Gnutella, available at

http://econ.gsia.cmu.edu/Ecommerce/Gnutella.pdf. Access Date: 2006-10-10.

http://www.kazaa.com/
http://www.skype.com/
http://www.cs.berkeley.edu/~zf/spamwatch/
http://morpheus.com/
http://java.sun.com/javaee/
http://java.sun.com/products/jdk/rmi/
http://www.sun.com/software/jini/
http://www.faqs.org/rfcs/rfc1.html
http://www.ietf.org/rfc/rfc1094.txt
http://www.ietf.org/rfc/rfc1112.txt
http://www.ietf.org/rfc/rfc2518.txt
http://www.ietf.org/rfc/rfc2526.txt
http://msdn.microsoft.com/netframework/
http://econ.gsia.cmu.edu/Ecommerce/Gnutella.pdf

172 CHAPTER 7. REFERENCES

[57] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang,

"Serverless Network File Systems," in 15th Symposium on Operating System

Principles. Copper Mountain Resort, Colorado: ACM Press, 1995, pp. 109-126.

[58] A. Bakker, I. Kuz, M. V. Steen, A. S. Tanenbaum, and P. Verkaik, "Design and

Implementation of the Globe Middleware," Report IR-CS-003, Vrije

Universiteit 2003.

[59] Peer-to-Peer Requirements on the Open Grid Services Architecture Framework,

available at http://www.gridforum.org/documents/GFD.49.pdf. Access Date:

2006-08-25.

[60] F. Baude, D. Caromel, and M. Morel, "From Distributed Objects to Hierarchical

Grid Components," Lecture Notes in Computer Science, vol. 2519, pp. 1226-

1242, 2003.

[61] R. J. Bayardo, A. Crainiceanu, and R. Agrawal, "Peer-to-Peer Sharing of Web

Applications," in 12th International World Wide Web Conference, 2003.

[62] F. Berman, G. Fox, and A. J. G. Hey, Grid Computing: Making the Global

Infrastructure a Reality: John Wiley & Sons, Ltd, 2003.

[63] G. A. Bolcer, M. Gorlick, and A. S. Hitomi, "Peer-to-Peer Architectures and the

Magi Open-Source Infrastructure," Endeavors Technology 2000.

[64] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and Evaluation of a

Wide-Area Event Notification Service," ACM Transactions on Computer

Systems, vol. 19, pp. 332-383, 2001.

[65] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, "One Ring to Rule

Them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay

Networks," in 10th ACM SIGOPS European Workshop, 2002.

[66] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, "SCRIBE: A

Large-Scale and Decentralised Application-Level Multicast Infrastructure,"

IEEE Journal on Selected Areas in Communications, 2002.

[67] A. Chien, B. Calder, S. Elbert, and K. Bathia, "Entropia: Architecture and

Performance of an Enterprise Desktop Grid System," Journal of Parallel

Distributed Computing, vol. 63, pp. 597-610, 2003.

[68] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, "A Case for End System

Multicast," IEEE Journal on Selected Areas in Communications, vol. 20, pp.

1456-1471, 2000.

http://www.gridforum.org/documents/GFD.49.pdf

 173

[69] B. Chun, D. Culler, and T. Roscoe, "PlanetLab: An Overlay Testbed for Broad-

Coverage Services," ACM Computer Communication Review, vol. 33, pp. 3-12,

2003.

[70] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, "Wide-Area

Cooperative Storage with CFS," in 18th ACM Symposium on Operating Systems

Principles (SOSP 2001), 2001.

[71] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris, "Designing

a DHT for Low Latency and High Throughput," in 1st. Symposium on

Networked Systems Design and Implementation (NSDI 04). San Francisco,

California, USA, 2003.

[72] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, "Towards a

Common API for Structured Peer-to-Peer Overlays," in 2nd International

Workshop on Peer-to-Peer Systems (IPTPS 2003), 2003.

[73] P. Druschel and A. Rowstron, "PAST: A Large Scale, Persistent Peer-to-Peer

Storage Utility," in The 8th Workshop on Hot Topics in Operating Systems

(HotOS-VIII). Elmau/Oberbayern, Germany, 2001.

[74] R. A. Ferreira, A. Grama, and S. Jagannathan, "Plethora: An Efficient Wide-

Area Storage System," in 11th ACM/IEEE/IFIP International Conference on

High Performance Computing, 2004, pp. 252-262.

[75] A. Ferscha and M. Hechinger, "A Light-Weight Component Model for Peer-to-

Peer Applications," in 24th IEEE International Conference on Distributed

Computing Systems (ICDCS 2004). Hachioji, Japan, 2004, pp. 520-527.

[76] I. Foster, "Globus Toolkit Version 4: Software for Service-Oriented Systems," in

IFIP International Conference on Network and Parallel Computing, 2005, pp.

2-13.

[77] M. J. Freedman and D. Mazières, "Sloppy Hashing and Self-Organizing

Clusters," in 2nd International Workshop on Peer-to-Peer Systems, 2003.

[78] K. Fu, F. Kaashoek, and D. Mazières, "Fast and Secure Distributed Read-Only

File System," in 4th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 2000). San Diego, USA, 2000.

[79] L. Gong, "Guest Editor's Introduction: Peer-to-Peer Networks in Action," in

IEEE Internet Computing, vol. 6, 2002, pp. 37-39.

[80] A. Gordon, Programming COM and COM+: Prentice Hall, 2000.

[81] M. Hatala, G. Richards, T. Eap, and J. Willms, "The eduSource Communication

Language: Implementing an Open Network for Learning Object Repositories

174 CHAPTER 7. REFERENCES

and Services," in ACM Symposium on Applied Computing. Nicosia, Cyprus,

2004.

[82] H. t. Hofte, Working Apart Together: Foundations for Component Groupware.

Enschede, the Netherlands: Telematica Instituut, 1998.

[83] Epidemic Algorithms, available at http://wwwcs.upb.de/cs/ag-

madh/WWW/Teaching/2004SS/AlgInternet/Submissions/09-Epidemic-

Algorithms.pdf. Access Date: 2006-08-15.

[84] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R.

Sidebotham, and M. West, "Scale and Performance in a Distributed File

System," ACM Transactions on Computer Systems, vol. 6, pp. 51-81, 1988.

[85] M. A. Jovanovic, F. S. Annexstein, and K. A. Berman, "Scalability Issues in

Large Peer-to-Peer Networks: A Case Study of Gnutella," University of

Cincinatti Technical Report 2001.

[86] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Panigrahy,

"Consistent Hashing and Random Trees: Distributed Caching Protocols for

Relieving Hot Spots on the World Wide Web," in 29th Annual ACM Symposium

on Theory of Computing, 1997, pp. 654-663.

[87] J. Kistler and M. Satyanarayanan, "Disconnected Operation in the Coda File

System," in 13th Symposium on Operating Systems Principles. Pacific Grove,

California, USA, 1991.

[88] J. Kleinberg, "The Small-World Phenomenon: An Algorithmic Perspective," in

32nd ACM Symposium on Theory of Computing (STOC 2000), 2000, pp. 163-

170.

[89] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.

Gummadi, S. C. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Y. Zhao,

"OceanStore: An Architecture for Global-Scale Persistent Storage," in 9th

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS 2000), 2000.

[90] M. Lewis and A. Grimshaw, "The Core Legion Object Model," in 5th IEEE

International Symposium on High Performance Distributed Computing, 1996.

[91] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, "Search and Replication in

Unstructured Peer-to-Peer Networks," in International Conference on

Supercomputing. New York, USA: ACM Press, 2002, pp. 84-95.

[92] G. S. Manku, M. Bawa, and P. Raghavan, "Symphony: Distributed Hashing in a

Small World," in 4th USENIX Symposium on Internet Technologies and Systems

(USITS 2003), 2003.

http://wwwcs.upb.de/cs/ag-madh/WWW/Teaching/2004SS/AlgInternet/Submissions/09-Epidemic-Algorithms.pdf
http://wwwcs.upb.de/cs/ag-madh/WWW/Teaching/2004SS/AlgInternet/Submissions/09-Epidemic-Algorithms.pdf
http://wwwcs.upb.de/cs/ag-madh/WWW/Teaching/2004SS/AlgInternet/Submissions/09-Epidemic-Algorithms.pdf

 175

[93] P. Maymounkov and D. Mazières, "Kademlia: A Peer-to-Peer Information

System Based on the XOR Metric," in 1st International Workshop on Peer-to-

Peer Systems (IPTPS 2002), 2002, pp. 53-65.

[94] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S.

Rollins, and Z. Xu, "Peer-to-Peer Computing," Technical Report HPL-2002-57.

HP Labs 2002.

[95] R. Mondéjar, P. García, and C. Pairot, "Bunshin: DHT para Aplicaciones

Distribuidas," in I Congreso Español de Informática (CEDI 2005). Granada,

Spain, 2005.

[96] R. Mondéjar, P. García, C. Pairot, and A. F. Gómez-Skarmeta, "Enabling Wide-

Area Service Oriented Architecture through the p2pWeb Model," in 15th IEEE

International Workshops on Enabling Technologies: Infrastructures for

Collaborative Enterprises (WETICE 2006). Manchester, UK, 2006.

[97] A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive Technologies:

O'Reilly, 2001.

[98] C. Pairot, P. García, A. F. Gómez-Skarmeta, and R. Mondéjar, "Towards New

Load-balancing Schemes for Structured Peer-to-Peer Grids," Future Generation

Computer Systems - The International Journal of Grid Computing: Theory,

Methods and Applications, vol. 21, pp. 125-133, 2005.

[99] C. Pairot, P. García, R. Rallo, J. Blat, and A. F. Gómez-Skarmeta, "The Planet

Project: Collaborative Educational Content Repositories on Structured Peer-to-

Peer Grids," in 5th ACM/IEEE International Symposium on Cluster Computing

and the Grid (CCGrid 2005). Cardiff, UK, 2005, pp. 35-42.

[100] P. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based Middleware

Architecture," in 22nd International Conference on Distributed Computing

Systems (ICDCS 2002). Vienna, Austria, 2002, pp. 611-618.

[101] C. G. Plaxton, R. Rajaraman, and A. W. Richa, "Accessing Nearby Copies of

Replicated Objects in a Distributed Environment," in 9th Annual ACM

Symposium on Parallel Algorithms and Architectures (SPAA 1997). Newport,

USA, 1997.

[102] J. A. Pouwelse, P. Garbacki, and D. H. J. Epema, "The Bittorrent P2P File-

Sharing System: Measurements and Analysis," in 4th International Workshop on

Peer-to-Peer Systems, 2005.

[103] S. Ratnasami, P. Francis, M. Handley, R. Karp, and S. Shenker, "A Scalable

Content Addressable Network," in ACM SIGCOMM, 2001.

176 CHAPTER 7. REFERENCES

[104] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, "Handling Churn in a

DHT," in USENIX Annual Technical Conference, 2004.

[105] S. C. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasami, S. Shenker, I.

Stoica, and H. Yu, "OpenDHT: A Public DHT Service and its Uses," in ACM

SIGCOMM, 2005.

[106] M. Rosenblum and J. Ousterhout, "The Design and Implementation of a Log-

Structured File System," ACM Transactions on Computer Systems, vol. 10, pp.

26-52, 1992.

[107] A. Rowstron and P. Druschel, "Pastry: Scalable, Distributed Object Location

and Routing for Large-Scale Peer-to-Peer Systems," in IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), 2001.

[108] A. Rowstron and P. Druschel, "Storage Management and Caching in PAST, a

Large-Scale, Persistent Peer-to-Peer Storage Utility," in 18th ACM Symposium

on Operating Systems Principles, 2001.

[109] K. Seymour and H. Nakada, "GridRPC: A Remote Procedure Call API for Grid

Computing," in Proceedings of GRID 2002, 2002.

[110] M. P. Singh, "Peering at Peer-to-Peer Computing," in IEEE Internet Computing,

vol. 5, 2001, pp. 4-5.

[111] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, "Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications," in ACM

SIGCOMM, 2001, pp. 149-160.

[112] C. Szyperski, Component Software. Beyond Object-Oriented Programming:

Addison Wesley, 1998.

[113] A. R. Tripathi and T. Noonan, "Design of a Remote Procedure Call System for

Object-Oriented Distributed Programming," Software-Practice and Experience,

vol. 28(1), pp. 23-47, 1998.

[114] M. Van Steen, F. J. Hauck, P. Homburg, and A. S. Tanenbaum, "Locating

Objects in Wide-Area Systems," in IEEE Communications, 1998, pp. 104-109.

[115] M. Van Steen, P. Homburg, and A. S. Tanenbaum, "Globe: A Wide-Area

Distributed System," IEEE Concurrency, vol. January-March 1999, pp. 70-78,

1999.

[116] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J.

Kubiatowicz, "Tapestry: A Resilient Global-Scale Overlay for Service

Deployment," IEEE Journal on Selected Areas in Communications, vol. 22,

2004.

 177

[117] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, "Tapestry: An Infrastructure for

Fault-Tolerant Wide-Area Location and Routing," University of California

UCB/CSD-01-1141, 2001.

[118] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz,

"Bayeux: An Architecture for Scalable and Fault-Tolerant Wide-Area Data

Dissemination," in 11th International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV 2001), 2001.

178 CHAPTER 7. REFERENCES

179

Annex A. Dermi’s Insights

A.1 Application Programming Interface

In this section, we describe how developers can benefit from Dermi‘s services. We

focus on how to use each of the invocation abstractions, access the decentralized object

registry, and implement a distributed interceptor.

Nevertheless, before going further into how developers can make good use of Dermi‘s

infrastructure, we first analyze Dermi‘s core classes, their interactions, and how they are

organized in order to provide all of its services.

A.1.1 Core Classes

Dermi‘s API is mainly composed by a bunch of classes, whose relationships are shown

in Figure A.1. There are other classes as well as the ones we show, but we concentrate

on describing the functionalities of the ones we consider to be core classes.

A.1.1.1 RemoteEventListener

The RemoteEventListener interface is the base interface to be implemented by all Dermi

remote stubs and skeleton objects. These objects are invisible to the developer and

provide object remote accessibility by means of dynamic proxy interception. The

interface defines the standard contract for any remote event triggered by the wide-area

event bus. Therefore, it provides upcalls invoked when any event arrives

(eventArrived()) or any anycall event arrives (anycallEventArrived()).

A.1.1.2 ERemote and EInterceptor

These interfaces are the ones that are inherited whenever any Dermi remote object‘s

public interfaces are implemented. Subsequently, any Dermi remote object must define

its public remotely accessible interface, which must extend the ERemote interface. On

the other hand, for a Dermi object to be able to be intercepted via the distributed

interception mechanism, it must implement the EInterceptor interface. The ERemote

interface provides standard methods for getting the properties of the remote object

180 ANNEX A. DERMI’S INSIGHTS

(getERef()), as well as initializing (init()), closing (close()), and copying (copy()) the

object.

The EInterceptor interface extends ERemote and also provides methods for adding and

removing object type compatible interceptors (addInterceptor() and

removeInterceptor()).

A.1.1.3 EventServer

The EventServer class provides the base publication functionalities of the event bus

layer for Dermi. Its main aim is to provide remote connectivity throughout the

underlying network substrate by means of sending notifications. It uses a Session object,

which is the one that really interacts with the event bus, thus sending and receiving

remote events. It can be seen as a wrapper class which is the superclass of all Dermi

remote objects (its subclasses are DermiRemoteObject, DermiProxy and

DermiRemoteInterceptorObject).

It basically uses two main methods:

 dispatchEvent(). This method dispatches an event, extracting all parameters

from an input Hashtable object. The event is disseminated to all members of the

specified multicast group. In fact, it invokes the publish() method from the

Session class.

 dispatchDirectEvent(). This method also dispatches an event, extracting all

parameters from an input Hashtable object. However, the difference between

this method and the previous one is that the event is delivered to the specified

node. Therefore, this is the base method for dispatching direct calls. In fact, it

invokes the publishDirect() method of the Session class.

A.1.1.4 DermiConnection

The DermiConnection object encapsulates a connection to all parts of the underlying

substrate which Dermi uses to provide all of its functionalities. It wraps the connection

to the overlay network routing layer, as well as the event server layer. The decentralized

object location and routing layer is managed by the static class called Registry. The

DermiConnection class provides a set of methods which are directly invoked by the

Session class. The most important are the following:

 subscribe().This method manages the subscription to a specified multicast

group. Therefore, all object stubs and skeletons subscribe to their object‘s

associated multicast group in order to stay notified of any events targeted to that

object.

 unsubscribe(). This is the inverse process. It stops notification about events

targeted to the specified multicast group.

A.1 APPLICATION PROGRAMMING INTERFACE 181

 publish(). This method dispatches an event to all members of the specified

multicast group.

 publishDirect(). This method dispatches an event to only one member of a

specified multicast group. It is the internal method which models the direct call

abstraction. Naturally, the destination‘s NodeHandle is required in order to be

able to send the event.

 anycall(). This method dispatches an event to the sender‘s closest member in the

multicast group. It is the core method for modeling the anycall abstraction.

 addInterceptor(). This method enables an interceptor to be added to a specified

multicast group. This means that before sending an event to the multicast group,

this event will sequentially traverse the added interceptors. This interceptor can

change the destination event, if it wants.

182 ANNEX A. DERMI’S INSIGHTS

Figure A.1. Dermi’s Class Diagram

A.1 APPLICATION PROGRAMMING INTERFACE 183

 removeInterceptor(). Used for removing type compatible interceptors from a

multicast group.

 continueInterception(). Method invoked when an event has traversed an

interceptor and must still be intercepted or sent to the multicast group.

Note that DermiConnection is in fact an abstract class, whose methods are implemented

in the dermi.core.pastry.DermiConnection class. This is so because it allows a Dermi

connection to be implemented independent of the underlying network subtrate.

Therefore, whenever we want to provide Dermi for another KBR layer, we need it to

implement the DermiConnection interface for that substrate.

A.1.1.5 Session

The Session class is the base class used by the dynamic remote stubs and skeletons to

access all of Dermi‘s services. It is basically a wrapper that allows access to all the

features exposed by Dermi.

A Session is created via a SessionFactory class (not shown in the diagram). The idea is

to specify the underlying connection class (i.e. dermi.core.pastry.DermiConnection) to

be used in the createSession() method. As a consequence, the connection class is loaded

and instantiated via reflection.

A.1.1.6 DermiRemoteObject

The DermiRemoteObject class is the core of a Dermi remote object. It extends the

EventServer class and implements the RemoteEventListener interface. Every Dermi

remote object implementation must extend this class if it is to be able to work as a

Dermi object. The inner implementation of a Dermi remote object is found in the

following methods:

 Constructor. In the constructor, we subscribe this object to its own multicast

tree, and we determine whether it is a hopped fault tolerant object. If it is, new

object replicas are activated throughout the neighbours.

 loadReplicaState(). This method is invoked whenever an object‘s remote state

needs to be obtained by any of its replicas. It calls the getReplicaState() which

calls the loadRemoteObjectState() method on the child class in order to anycall

to the object group and recover the object‘s state.

 eventArrived(). This is the core method of this class. It is the upcall method

invoked every time a remote event is targeted to this object. It first takes care of

special remote methods, like getBytes() or getRemoteObjectState(). If it is not

one of them, it processes the method by invoking it locally on this object (the

object‘s child implementation class) using reflection. If everything goes well, it

sends the invocation result back to the caller. If an exception occurs, it

constructs a remote exception object and sends it back to the caller.

184 ANNEX A. DERMI’S INSIGHTS

 anycallEventArrived(). This method is the same as the one above but deals with

anycalls and manycalls. Since obtaining an object‘s state is considered an

anycall, it first deals with this special case (getRemoteObjectState()).

Afterwards, it discovers whether the remote method is an anycall or a manycall

(by trying to invoke the global condition method). Subsequently, it deals with

each case‘s particularities: invoking the local / global condition methods, and

dealing with each of its responses (affirmative / negative). Depending on each

case, the anycall / manycall will continue routing or will stop at this node.

Similarly, if any kind of exception occurs, a remote exception response is sent

back to the caller.

 addListener() / removeListener(). These methods manage the addition and

removal of remote listeners. Therefore, each time an event matching the

listener‘s subscription is received, all of its listeners are invoked the onEvent()

method.

A.1.1.7 DermiRemoteInterceptorObject

The DermiRemoteInterceptorObject class is similar to DermiRemoteObject, but for the

interceptor objects. These objects are required to implement this class and obtain full

distributed interception services. Therefore, this class furnishes the basic abstractions

so that this service can be provided.

 Constructor. The constructor initializes this object, and performs an automatic

subscription as interceptor (addInterceptor()) in its specified multicast group. As

a consequence, all events sent to that group will first traverse this object.

 interceptorEventArrived(). Once an interceptor event arrives, this upcall is

invoked. The local method specified in the event‘s contents is invoked and the

interception is resumed by calling resumeInterception().

 resumeInterception(). This method changes the event‘s contents (if this is the

interception‘s goal), and calls Session‘s continueInterception() method, which

continues the interception process to the next interceptor or delivers the event to

the multicast group (if no more interceptors are present).

 addInterceptor() / removeInterceptor(). These methods manage subscription /

unsubscription from this object as an interceptor in the specified multicast

group.

A.1.1.8 Registry

This static class provides the decentralized object location facilities of our object

middleware. It allows remote object metadata, and serializable object insertion / lookup

primitives. It can be seen as Dermi‘s Naming Service. The Registry class contains a

reference to a Naming object. This Naming object is an interface which uniformizes

access to any DHT-like underlying layer. Therefore, it defines the basic methods for

looking up and inserting data into a DHT. Specific implementations of this interface

A.1 APPLICATION PROGRAMMING INTERFACE 185

allow Dermi to work with PAST (dermi.registry.past.Naming) or Bunshin

(dermi.registry.bunshin.Naming).

The most important methods provided by the Registry class are the following:

 lookup(). This method returns a remote reference (stub) for the remote object

associated with the specified identifier. This is the usual way of obtaining

references to the remote object, and thus of calling its methods.

 lookupSer(). This method returns a serializable object that has been previously

inserted into the DHT. This object can be of any kind, with the only requirement

that it implements Java‘s Serializable interface.

 bind(). By using the bind() method, we can insert remote object references into

the DHT. What is in fact inserted is not the remote object nor its reference, but a

set of properties recreating the remote object reference in the near future. Any

bound object references can later be restored by calling lookup().

 bindSer(). We use this method for inserting any kind of serializable object into

the DHT. These objects can later be restored by calling the lookupSer() method.

 unbind(). This method enables a remote object‘s reference to be deleted from the

DHT.

 removeSer(). This method enables a serializable object to be deleted from the

DHT.

 rebind(). This method overwrites the specified remote object reference if it

already exists or it creates a new one if it does not.

 list(). This method lists all children nodes from a specified root object. For

instance, if the p2p://deim.etse.urv.cat root is specified, a list of all bound

children nodes is returned (p2p://deim.etse.urv.cat/deskshot,

p2p://deim.etse.urv.cat/jounin, …).

 bindSecure(). This method securely binds resources, by storing an encrypted

password.

 lookupSecure(). This method allows any securely bound object in the DHT to be

restored. If the password given is incorrect, the resource is not returned.

A.1.1.9 DermiProxy

The DermiProxy class is invisible to the developer because it performs all of the remote

object reference communication when invoking remote objects. In earlier versions of

Dermi, stubs for remote objects had to be pregenerated using the dermic tool. This was

inherited because of the way in which Java RMI worked. However, by taking advantage

of the features of Java version 1.4 onwards, we eliminated the need to pregenerate all

object stubs by creating a dynamic proxy object which intercepted all object calls and

186 ANNEX A. DERMI’S INSIGHTS

performed all remote communication in such a way that it was totally transparent to the

developer.

Therefore, every time we obtain a reference to a remote object, what we really obtain is

a reference to a DermiProxy object by invoking the

java.lang.reflect.Proxy.newProxyInstance() reflection method. This object acts as a

transparent bridge which intercepts all of its proxied object‘s calls. As a consequence,

every time an object‘s method is called, the invoke() method on the proxy is invoked

first. This method analyzes if the method called is a remote one or a local one. In the

latter case, it simply calls it. However, if it is a remote method call, it first extracts the

method‘s annotation information to discover if it is a direct call, multicall, anycall or

manycall. Moreover, the synchrony type is also discovered (synchronous or

asynchronous). After the object‘s granularity and synchrony types have been

discovered, an event of the appropriate type is dispatched and targeted to the remote

object. This event is received by the remote object, which in turn invokes its method,

and dispatches its result back.

Meanwhile, the DermiProxy object is waiting for a result (or a timeout), and when the

result is received by invoking its eventArrived() method, the thread awakes and

processes the result value. This value is returned as a result to the caller, without the

local method being called, because it has already been remotely called .

A.1.1.10 RemoteException

This is the remote exception superclass in Dermi. It is thrown every time a remote

object invocation fails for some reason. There are many subclasses of this exception, all

of which show different error conditions: ConnectionException, NotBoundException,

NotSatisfiedException, TimeoutException, RegistryNotLoadedException,

TypeNotFoundException, UnmatchedAnycallMethodException, …

A.1.2 Programming Dermi

When we designed Dermi‘s API, we wanted to facilitate the learning process for

developers as much as possible. Therefore, the coding steps are natural for those

developers who are used to programming with Java RMI. The guidelines are

summarized below:

A.1.2.1 Defining a Remote Object

To define a new remote object we must first define the remote object‘s exposed

interface (see Figure A.2). This remote interface contains all the methods that the object

exposes and which can be remotely called by Dermi. The interface is required to extend

Dermi‘s ERemote interface, as well as to be annotated as @DermiRemoteInterface. For

each method, we specify the kind of method invocation (Direct Call, Hopped Call,

Multicall, …), and its synchrony type (Synchronous or Asynchronous). All remote

methods should throw a RemoteException so that object clients can be notified about

remote failures.

A.1 APPLICATION PROGRAMMING INTERFACE 187

package dermi.samples.simple;

import dermi.*;

import dermi.exception.*;

import dermi.annotation.*;

/**

 * Interface to a Dermi Remote Object (Simple Object)

 * @author Carles Pairot <carles.pairot@urv.net>

 * @version 1.2

 */

@DermiRemoteInterface

public interface Simple extends ERemote {

 @RemoteMethod (granularity = Granularity.MULTICALL, type =

 SynchronyType.SYNCHRONOUS)

 public void setAge (String age) throws RemoteException;

 @RemoteMethod (granularity = Granularity.MULTICALL, type =

 SynchronyType.SYNCHRONOUS)

 public String getAge() throws RemoteException;

 @RemoteMethod (granularity = Granularity.MULTICALL, type =

 SynchronyType.SYNCHRONOUS)

 public String merge (Integer x, String y, Integer z)

 throws RemoteException;

}

Figure A.2. Interface of a Dermi Remote Object

All the methods exposed by the remote object are defined in its interface. Java 1.5‘s annotations are used

to specify that this is a Dermi interface (@DermiRemoteInterface), and for each method, we specify its

call type (Granularity.MULTICALL) and its synchrony type (SynchronyType.SYNCHRONOUS).

Secondly, we must implement the remote object‘s methods. As we can observe in

Figure A.3, the implementation only requires that Dermi‘s DermiRemoteObject class

(which manages the underlying remote communication between objects) be extended,

and obviously that the object‘s interface defined above be implemented. Two

constructors for object initialization are also required by Dermi.

package dermi.samples.simple;

import dermi.*;

import dermi.exception.RemoteException;

import java.util.*;

/**

 * Implementation of Simple object's methods

 * The implementation completely hides remote state propagation

 * This will be taken into account transparently by the object's skeleton

 * @author Carles Pairot <carles.pairot@urv.net>

 * @version 1.2

 */

public class SimpleImpl extends DermiRemoteObject implements Simple {

 String age = "12";

 // Dermi constructor: REQUIRED

 public SimpleImpl() {

 }

188 ANNEX A. DERMI’S INSIGHTS

 // Dermi constructor: REQUIRED

 public SimpleImpl (Properties env) throws RemoteException {

 super (env);

 System.out.println ("[Simple] object created.");

 }

 // Remote methods implementation

 public void setAge (String age) throws RemoteException {

 System.out.println ("[setAge] called.");

 this.age = age;

 }

 public String getAge() throws RemoteException {

 System.out.println ("[getAge] called.");

 return age;

 }

 public String merge (Integer x, String y, Integer z)

 throws RemoteException {

 System.out.println ("[merge] called.");

 return age + " + " + y + " + " + x + " + " + z;

 }

}

Figure A.3. Implementation of a Dermi Remote Object

The DermiRemoteObject class needs to be extended, the object‘s interface implemented, and two

constructors for object initialization created.

A.1.2.2 Defining anycall methods

Developers can easily mark any remote object‘s methods as anycalls, by following the

same rules that are used to define any Dermi object: using annotations. To mark a

method as an anycall procedure, we must mark it with the Granularity.ANYCALL tag,

and its condition method as Granularity.ANYCALL_CONDITION. In our example, the

object that returns the data unit (getDataUnit) will be called if and only if the condition

method (getDataUnitCondition) returns true, as specified in Figure A.4. Otherwise, the

message is routed to another group member.

Figure A.5 shows a class diagram for a sample Dermi remote object implementation

using the anycall abstraction. Notice how it inherits and implements the proper Dermi

classes / interfaces. Both SetiClient and SetiServer classes use the remote object.

/**

 * This is the interface for the Seti anycall demo object

 * @author Carles Pairot <carles.pairot@urv.net>

 * @version 1.2

 */

@DermiRemoteInterface

public interface Seti extends ERemote {

 // Method signature for the anycall method pair must be the same,

 // except for the return result, which needs to be boolean for the

 // condition method

 /**

 * This method returns data unit from one of the client's nearest server

 * @param system String Example parameter

A.1 APPLICATION PROGRAMMING INTERFACE 189

 * @throws RemoteException If something goes wrong ;-)

 * @return String Data unit returned

 */

 @RemoteMethod (granularity = Granularity.ANYCALL)

 public String getDataUnit (String system) throws RemoteException;

 /**

 * This method is automatically called by the skeleton to check whether

 * the condition can be satisfied for each server

 * @param system String Example parameter

 * @throws RemoteException If something goes wrong ;-)

 * @return boolean true if condition satisfied (the server has

 * available data units)

 */

 @RemoteMethod (granularity = Granularity.ANYCALL_CONDITION)

 public boolean getDataUnitCondition (String system)

 throws RemoteException;

}

Figure A.4. Definition of anycall methods in a remote object's interface

Figure A.5. Sample anycall Dermi application class diagram

190 ANNEX A. DERMI’S INSIGHTS

A.1.2.3 Defining manycall methods

The manycall‘s API follows the same strategy as anycall: it marks the methods with a

special annotation tag (Granularity.MANYCALL), and defines the local and global

condition methods with Granularity.MANYCALL_LOCAL_CONDITION and

Granularity.MANYCALL_GLOBAL_CONDITION (see Figure A.6). The

implementation part naturally hides all communication details from the developer.

/**

 * This is the interface to the Voting object

 * @author Carles Pairot <carles.pairot@urv.net>

 * @version 1.2

 */

@DermiRemoteInterface

public interface Voting extends ERemote {

 @RemoteMethod (granularity = Granularity.MANYCALL)

 public Integer vote (Integer currentVotes, Integer maxVotes,

 String party) throws RemoteException;

 @RemoteMethod (granularity = Granularity.MANYCALL_LOCAL_CONDITION)

 public boolean voteCondition (Integer currentVotes, Integer maxVotes,

 String party) throws RemoteException;

 @RemoteMethod (granularity = Granularity.MANYCALL_GLOBAL_CONDITION)

 public boolean voteGlobalCondition (Integer currentVotes,

 Integer maxVotes, String party) throws RemoteException;

}

Figure A.6. Definition of manycall methods in a remote object's interface

A.1.2.4 Working with the Decentralized Object Registry

From the developer‘s perspective, accessing the DOLR layer via the decentralized

location service is accomplished via the Registry object. This object provides the bind,

lookup and remove methods typical of any naming service. Therefore, we can easily

bind object references, look them up and remove them through Dermi‘s API. This

process is illustrated as follows:

 Once the remote object has been coded (interface and implementation), it is

ready to be used. The first time, we initialize the object, and bind it on the

decentralized object registry, so that it can be subsequently used by other clients.

This process is shown in Figure A.7.

A.1 APPLICATION PROGRAMMING INTERFACE 191

...

// Load Dermi’s connection properties

Properties env = Registry.getEnvironment ("dermi-config.xml");

// Create remote object (the first time)

SimpleImpl server = new SimpleImpl (env);

// We can use the object now

server.setAge ("29");

// Now that the object is created, we can bind in on the DOLR

Registry.bind ("p2p://simple_dermi_object", server);

...

Figure A.7. Binding an object into the decentralized object location service

We first obtain connection properties by calling Registry.getEnvironment(). These properties are passed

to the object when it is initialized for the first time. After object initialization, we can call its methods.
Whenever we want to insert the object‘s reference into the location service, we invoke Registry.bind().

 Whenever any other node in the network (another object probably) wishes to

work with the p2p://simple_dermi_object we created before, it simply looks it

up on the registry and starts working with it as if it was a local object (see Figure

A.8).

...

// Load the registry first

Registry.loadRegistry ("dermi-config.xml");

// Look up an object in the registry

Simple client = (Simple) Registry.lookup ("p2p://simple_dermi_object");

// Execute remote object's methods

client.setAge ("30");

...

Figure A.8. Looking up an object from the decentralized object location service

First we must connect to the overlay network, and load the registry using the Registry.loadRegistry()

method. Then we obtain the remote object‘s reference (stub) so as to be able to call its remote methods.
Once they have been obtained, we can call the object‘s methods. Note that we are working with a stub

which will transparently marshal/unmarshal calls to the remote object itself.

A.1.2.5 Implementing Distributed Interception Objects

From the developer‘s perspective, implementation of an interceptor object follows

similar rules as those followed when a standard Dermi remote object is implemented.

However, the interceptor must implement the EInterceptor interface. Its

implementation must extend the DermiRemoteInterceptorObject class and, of course,

implement the interceptor interface. If we wish to intercept methods from another

object, the interceptor‘s methods signature will have to be the same as the original

method if only the input parameters are to be intercepted. The output parameter can be

changed so that the original parameters can be transformed into a Vector.

192 ANNEX A. DERMI’S INSIGHTS

/**

 * This is the implementation of a log interceptor object. Its methods

 * will be called each time a call is made to the destination object (in

 * this case the Simple object)

 * @author Carles Pairot <carles.pairot@urv.net>

 * @author Pedro Garcia <pedro.garcia@urv.net>

 * @version 1.2

 */

public class LogInterceptorImpl extends DermiRemoteInterceptorObject

 implements LogInterceptor {

 ...

 public Vector setAge (String p0) throws RemoteException {

 System.out.println ("[setAge: adding two more years]");

 // If we wished to change the value of parameters, simply change them

 // and pile them up in order in the returned Vector

 Vector v = new Vector();

 v.add (new String ("" + (Integer.parseInt (p0) + 2)));

 return v;

 }

 public void getAge() throws RemoteException {

 System.out.println ("[LogInterceptor - getAge]");

 }

 public Vector merge (Integer p0, String p1, Integer p2) throws

 RemoteException {

 System.out.println ("[LogInterceptor - merge]");

 // If we wished to change the value of parameters, simply change them

 // and pile them up in order in the returned Vector

 Vector v = new Vector();

 v.add (p0);

 v.add (new String ("merge intercepted ;-)"));

 v.add (p2);

 return v;

 }

}

Figure A.9. Implementing a distributed interceptor object

The object must extend the DermiRemoteInterceptorObject class, and implement all methods to be

intercepted.

Once the remote interceptor object has been implemented, we can instantiate it and bind

it in realtime with the already running object. Therefore, all intercepted calls will first

traverse the interceptor object, and then be routed towards the destination object. In

order to commit a realtime binding, we must instantiate the interceptor, and pass the

reference to the object we wish to intercept.

A.1.2.6 Defining Replicated Objects

From the developer‘s point of view, the marking of an object as stateful implies that it

must implement the StatefulReplica interface. This interface provides two methods:

loadRemoteObjectState(), called whenever the object‘s state is to be loaded from the

DHT layer, and getRemoteObjectState(), called whenever the object‘s state is to be sent

to the DHT layer.

A.1 APPLICATION PROGRAMMING INTERFACE 193

When the object replica is initialized, state is recovered from the DHT layer by calling

loadReplicaState() in the constructor. This method performs an anycall to the same

object‘s multicast group, which calls getRemoteObjectState() on the remote object, and

with the returned value, it populates state information about the local object.

...

// Load the registry first

Registry.loadRegistry ("dermi-config.xml");

// Look up the Simple object in the registry

Simple obj = (Simple) Registry.lookup ("p2p://simple_dermi_object");

// Instantiate and bind the interceptor object with the Simple object

LogInterceptorImpl server = (LogInterceptorImpl) Registry.loadInterceptor (

"dermi.samples.interception.LogInterceptorImpl", obj);

// The interceptor is loaded. All calls done to the Simple object will

// automatically traverse our interceptor now

...

Figure A.10. Binding an interceptor to an already running object

The loadInterceptor() method allows dynamic interceptor binding.

194 ANNEX A. DERMI’S INSIGHTS

public class SpriteImpl extends DermiRemoteObject implements Sprite,

 StatefulReplica {

 private int x;

 ...

 // Dermi constructor: REQUIRED

 public SpriteImpl (int x, Properties env) throws RemoteException {

 super (env);

 // Default x value

 this.x = x;

 // Load replica state

 super.loadReplicaState();

 }

 /**

 * Method for loading state into this object

 * @param data SpriteValues Object state

 */

 public void loadRemoteObjectState() throws RemoteException {

 SpriteData data = (SpriteData) super.loadState();

 this.x = data.getX();

 }

 /**

 * Method for obtaining this object's state

 * @return SpriteData

 */

 public Serializable getRemoteObjectState() {

 return new SpriteValues (x);

 }

}

Figure A.11. Object replication example

All stateful objects must implement the StatefulReplica interface, and implement

loadRemoteObjectState() and getRemoteObjectState() methods. When initializing the object, we must

force the loading of the object‘s state.

195

Annex B. p2pCM’s Insights

B.1 Application Programming Interface

In this section we not only analyze p2pCM‘s core classes and their interactions, but also

how they are organized in order to provide all of their exposed services. We also focus

on how p2pCM components can be implemented and outline all the necessary steps for

this goal to be accomplished.

B.1.1 Core Classes

p2pCM‘s core class diagram is shown in Figure B.1. We will briefly describe each of

them and outline the main methods which provide p2pCM functionalities.

B.1.1.1 ComponentInterface

The ComponentInterface interface extends Dermi‘s ERemote interface. This is the

interface to be extended by all p2pCM remote component interfaces. Not only must

components implement ERemote‘s methods, but also the queryInterface() method, and

the activate() and passivate() methods. The queryInterface() method must be explicitly

implemented by the component‘s implementation. However, since the Component base

class already provides a default implementation for the activate() and passivate()

methods, component implementation classes may or may not override them.

B.1.1.2 Component

The Component class is the base class to be extended by all p2pCM remote component

implementations. This class is basically a Dermi remote object which offers all

component services to p2pCM developers. Therefore, it inherits from

DermiRemoteObject and provides default implementation methods for activation and

passivation, as well as persistent (DHT) storage / retrieval and de-serialization.

Component‘s life cycle management is performed through a ComponentControl

instance.

196 ANNEX B. P2PCM’S INSIGHTS

 storePersistentState(). This method can be called to serialize the component‘s

state in the underlying DHT as a Serializable object.

 loadPersistentState(). This method can be used to restore the component‘s

persistent state from the DHT.

 activate(). This method implements the default activation policy for

components. Therefore, it follows this algorithm:

 First the node's five most suitable replicas are obtained.

 If there are fewer than two replicas, it is impossible to activate new

components (node is isolated)

 The node which is overwhelming this component is identified, and a new

object replica is activated there, unless an instance is already active

within that node.

Naturally, this method can be overridden to implement more complex activation

policies.

 passivate(). This method implements the default passivation policy for

components. It unloads the component from memory and serializes its state into

the DHT. This process is performed whenever the component‘s instance is not

utilized within a threshold specified in seconds.

B.1.1.3 ComponentControl

This class models the component‘s life cycle manager. It provides the necessary

callbacks for component activation and passivation. It is a default implementation of a

life cycle manager, and it keeps track of the number of invocations. If it detects a low

memory condition or a low invocation interval, it calls the passivate() method on the

Component. On the contrary, if it detects a high invocation interval, new component

replicas are spawned by calling the activate() method on the Component. This

component‘s life cycle behaviour can be easily overriden by extending the class.

B.1 APPLICATION PROGRAMMING INTERFACE 197

Figure B.1. p2pCM Class Diagram
Notice how p2pCM uses Dermi as its remote object foundation.

198 ANNEX B. P2PCM’S INSIGHTS

B.1.1.4 ComponentFactory

The ComponentFactory class provides the methods necessary for instantiating new

component instances. All specific component factories must extend this class so that

new component instances of their type can be created. The main method provided is

createInstance():

 createInstance(). Two variants of this method are provided to create component

instances: one with initialization arguments and the other without. The default

behaviour is applied when a component instance is created. Basically, if a

previous instance is found to be already running on the network (checked by

using the checkAlreadyActiveInstance() anycall method), its stub reference is

returned (getComponentStub()). Otherwise, a brand new component instance is

created locally (instantiateComponent()), and its reference is returned.

B.1.1.5 ComponentUtil

The ComponentUtil class provides static methods that allow common tasks among any

component‘s life cycle. It basically manages component deployment / undeployment

from the DHT.

 deployComponent(). Based on a parameter-specified URL or path to a packed

component JAR file, it extracts its metadata and deploys the component on the

DHT, under the specified p2p URI. As a consequence, this component becomes

usable by p2pCM, and can be instantiated.

 undeployComponent(). Deletes any trace of the component from the DHT. If

attempts are made to instantiate the component when it is not deployed, a

ComponentNotRegisteredException is thrown.

B.1.1.6 Exceptions

Some exceptions can be thrown by p2pCM, all of which extend Dermi‘s

RemoteException base exception class. These are:

 ComponentInitializationException. Thrown whenever something goes wrong

while trying to instantiate a component.

 ActivationException. Thrown whenever something bad happens when trying to

activate a new component instance.

 PassivationException. Thrown whenever something bad happens when trying to

passivate a new component instance.

 InterfaceNotFoundException. Thrown whenever the specified queried interface

is not implemented by the component.

B.1 APPLICATION PROGRAMMING INTERFACE 199

 ComponentDeploymentException. Thrown whenever something goes wrong

while deploying a component.

 ComponentNotRegisteredException. Thrown when trying to lookup a

component that has not been deployed yet.

B.1.2 Programming p2pCM

This section describes how developers should build reusable components with p2pCM,

from design and implementation through deployment and use.

B.1.2.1 Defining a Remote Component

The definition of a p2pCM remote component involves several steps, which include the

implementation of the component‘s factory class, the design of the component‘s

interfaces, and finally the implementation of the component itself. Finally, the

component must be deployed on the DHT if it is to be usable.

From the developer‘s perspective, developing the component‘s factory requires the

following steps:

 A class should be created that extends p2pCM‘s ComponentFactory class.

 This class should be annotated with the @DCMFactory tag, and component‘s

metadata should be specified (identification, is it stateful?, is it replicated?,

persistence type, and deployment URI)

 The factory constructor should be implemented (simply calling the superclass

constructor)

 The createInstance methods should be overridden (if necessary) to allow

component instantiation with and without initialization parameters.

An example of a typical component factory implementation is shown in Figure B.2.

/**

 * Simple component's factory class. Note that it must extend

 * ComponentFactory

 * It must provide a standard set of annotations which indicate the

 * component's metadata:

 * - id -- Component's unique ID

 * - stateful -- Whether it is stateful or stateless

 * - persistent -- Which kind of persistence is applied

 * - replicated -- Whether it is replicated or not (singleton)

 * - url -- URL where the component's metadata entry will be

 * bound in the decentralized registry

 *

 * @author Carles Pairot <carles.pairot@urv.net>

 * @version 1.2

 */

@DCMFactory (

 id = "39fb8620-38e1-45c7-9275-4fe3133d19ac",

200 ANNEX B. P2PCM’S INSIGHTS

 stateful = false,

 persistent = PersistenceType.CONTAINER,

 replicated = true,

 url = "p2p://results.deim.etse.urv.cat"

)

public class ResultsFactory extends ComponentFactory {

 /**

 * ResultsFactory's constructor -- REQUIRED

 * @param componentURL String Component's URL locator

 * @throws RemoteException If something goes wrong ;-)

 */

 public ResultsFactory (String componentURL) throws RemoteException {

 super (componentURL);

 }

 /**

 * This method creates an instance of this component (without arguments),

 * and returns an implementation of the specified interface

 * @param interf String Interface name

 * @param instance String Instance name

 * @return ComponentInterface Returns an implementation of

 * ComponentInterface

 * @throws InterfaceNotFoundException Thrown if specified interface

 * cannot be found

 * @throws RemoteException Thrown if something else goes wrong ;-)

 */

 public ComponentInterface createInstance (String interf, String instance)

 throws InterfaceNotFoundException, RemoteException {

 return super.createInstance (interf, instance);

 }

 /**

 * This method creates an instance of this component (with arguments),

 * and returns an implementation of the specified interface

 * @param interf String Interface name

 * @param instance String Instance name

 * @param args Object[] Component arguments

 * @return ComponentInterface Returns an implementation of

 * ComponentInterface

 * @throws InterfaceNotFoundException Thrown if specified interface

 * cannot be found

 * @throws RemoteException Thrown if something else goes wrong ;-)

 */

 public ComponentInterface createInstance (String interf, String instance,

Object...args) throws InterfaceNotFoundException, RemoteException {

 return super.createInstance (interf, instance, args);

 }

}

Figure B.2. Implementation of a component’s factory class

It is important to extend the ComponentFactory class, and appropriately annotate the component‘s

metadata.

From the developer‘s point of view, a component‘s interface and implementation are

practically seen as a Dermi object, with some particularities:

 The component‘s interfaces must extend p2pCM‘s ComponentInterface class,

and be annotated as @DermiRemoteInterface

 Interface methods must be annotated as Dermi methods

B.1 APPLICATION PROGRAMMING INTERFACE 201

@DermiRemoteInterface

public interface Result extends ComponentInterface {

 @RemoteMethod (

 granularity = Granularity.MULTICALL,

 type = SynchronyType.SYNCHRONOUS

)

 public void addResult (String data) throws RemoteException;

 @RemoteMethod (

 granularity = Granularity.ANYCALL,

 type = SynchronyType.SYNCHRONOUS

)

 public String getResult() throws RemoteException;

}

Figure B.3. A p2pCM component interface

Component interfaces must be tagged as @DermiRemoteInterface, and extend ComponentInterface. The

methods must be annotated as Dermi methods.

 The implementation class must extend p2pCM‘s Component class, and

implement the component‘s interfaces. It must also be annotated as

@DCMImplementation.

 The queryInterface() method must be overriden in order to return the specified

view of the component depending on the component‘s interface queried for.

An example of a component‘s interface is shown in Figure B.3. An implementation is

shown in Figure B.4

/**

 * This is the component's base class. In this case, all of the component's

 * interfaces are implemented

 * It is in fact a special Dermi Remote Object that must extend the

 * Component class, and be labelled with @DCMImplementation annotation tag.

 *

 * @author Carles Pairot <carles.pairot@urv.net>

 * @version 1.2

 */

@DCMImplementation

public class ResultsImpl extends Component implements Result, Filter {

 // Dermi constructors: REQUIRED

 ...

 // Component’s methods implementation

 ...

 /**

 * The queryInterface method must return a suitable component

 * implementation for the specified interface

 * @param interf String The desired interface implementation

 * @return ComponentInterface The desired implementation instance

 * @throws InterfaceNotFoundException If the component does not provide

 * an implementation for such specified interface

 */

 public ComponentInterface queryInterface (String interf)

 throws InterfaceNotFoundException {

 try {

 if (interf.equals ("org.planet.p2pcm.ComponentInterface") ||

202 ANNEX B. P2PCM’S INSIGHTS

 interf.equals ("org.planet.p2pcm.samples.simple.Result") ||

 interf.equals ("org.planet.p2pcm.samples.simple.Filter")) {

 return (ComponentInterface) this.copy();

 }

 else {

 throw new InterfaceNotFoundException ("Interface " + interf + " not

 implemented.");

 }

 } catch (RemoteException re) {

 throw new InterfaceNotFoundException ("Unable to query for interface

 " + interf + ": " + re.getMessage());

 }

 }

}

Figure B.4. A p2pCM component implementation

Component implementations must extend Component class, and be annotated as @DCMImplementation.

The method queryInterface() must be overriden to deal with different component views.

B.1.2.2 Component Deployment / Undeployment

Once the component factory has been implemented, we should implement the

component itself (previous section) and, after that, we should deploy it on the network,

so that it can be worldwide visible and instantiable. To do so, we should call the

ComponentUtil.deployComponent() method, and pass the packaging JAR file that

contains the component‘s classes. There is a ComponentUtil.undeployComponent()

method which allows component undeployment from the network. Figure B.5 illustrates

this process.

Figure B.5. Deploying a p2pCM component

Once the component‘s classes are packed in a JAR file, we can deploy it using

ComponentUtil.deployComponent().

B.1.2.3 Component Instantiation

Once we have implemented the component‘s factory, its interfaces and the

implementations, we are ready to instantiate the component. To do so, we must follow

these guidelines:

 Look the component‘s factory up in the decentralized registry

// This is how components are deployed: we must specify a JAR file which

// contains all component's classes

ComponentUtil.deployComponent (new URL ("file:./class_store/components/result-

simple.jar"));

// Test component

...

// If you wish to undeploy a component, you can proceed this way

ComponentUtil.unDeployComponent ("p2p://results.deim.etse.urv.cat");

...

B.1 APPLICATION PROGRAMMING INTERFACE 203

 Create an instance of the component, specifying the desired view (interface) to

be returned. We must specify the instance identifier as well and, optionally, any

initialization parameters

 Once this has been done, we can work with the component‘s view

 If we desire to work with another component‘s view (interface), we can invoke

the queryInterface() method

This behaviour is shown in Figure B.6.

...

ComponentFactory fac = null;

// Get component’s factory

try {

 fac = ComponentUtil.getComponentFactory (

"p2p://results.deim.etse.urv.cat");

} catch (ComponentNotRegisteredException e) {

 ...

}

// Instantiate a "SETI" instance for the component Result

try {

Result res = (Result) fac.createInstance (

 "org.planet.p2pcm.samples.simple.Result", "SETI");

 // Call component’s methods

 res.addResult ("new_data_unit_00001");

 // Get a new view on the Result component (the interface Filter)

 Filter filt = (Filter) res.queryInterface (

 "org.planet.p2pcm.samples.simple.Filter");

 // Call methods on the new view

 Object[] a = filt.getBestGaussians();

 ...

} catch (InterfaceNotFoundException e) {

 // Queried interface is invalid

 ...

}

...

Figure B.6. A p2pCM component instantiation

It is mandatory to obtain the component‘s factory first. We can then instantiate a new component

instance, which will be created locally if it is the first occurrence in the network, or we will be returned a

stub to one that is already running.

Figure B.7 shows a sample p2pCM application‘s class diagram. The Slides component

is defined. It implements two views: the Screen and the Controls interfaces. They can

both be queried, and we can observe that both are implemented by the SlidesImpl class,

which models the component‘s base implementation. Note how interfaces inherit from

ComponentInterface and how the SlidesFactory extends ComponentFactory, and

SlidesImpl does the same with the Component class. The TestSimpleComponent class

deploys the component and uses it.

204 ANNEX B. P2PCM’S INSIGHTS

B.1.2.4 Stateful Components

Stateful components must implement the StatefulReplica interface, which provides the

loadRemoteObjectState() and getRemoteObjectState() methods used to load and get the

object‘s state, respectively. On replica activation, Dermi anycalls

(getRemoteObjectState()) to the multicast group asking for the closest up-to-date object

copy in the network. This copy returns its state to the recently activated object, thus

achieving initial state loading (loadRemoteObjectState()). This mechanism is the same

as the one for stateful replica remote objects in Dermi.

From the developer‘s perspective, if the PersistenceType.CONTAINER mode is chosen,

state storage and recovery is completely transparent. Once a component instance that

has been previously passivated on the DHT is re-created, p2pCM will first try to load

state from an already running instance. If none is found, then the state will be obtained

from the DHT itself. The programmer remains completely unaware of this process and

needs to code nothing to achieve it (but must remember to implement the

StatefulReplica on the component).

Figure B.7. Sample p2pCM Application Class Diagram

205

Annex C. SNAP’s Insights

C.1 Application Programming Interface

As with other annexes, in this section we describe SNAP‘s core classes and their

interactions and give an overview of how developers can use SNAP to construct wide-

area distributed applications.

C.1.1 Core Classes

Although developers do not need SNAP‘s API to program and deploy applications on

our infrastructure, SNAP exposes some of its internal methods to developers so that

applications can dynamically activate new replicas, perform redirections to other

applications, and check database liveness. There is also a simple introspection API

which shows all active SNAP applications, and for each of them reveals which nodes

host their instances. This introspection API will be further investigated in future work.

SNAP‘s API is shown in Figure C.1 and it corresponds to the

org.planet.snap.IApplication interface. Figure C.2 shows an example of how the

introspection API is used.

@DermiRemoteInterface

public interface IApplication extends ERemote {

 // Returns the URL of this running web application instance

 @RemoteMethod (granularity = Granularity.ANYCALL)

 public String getAppInstance (String appp2pUrl) throws RemoteException;

 // Anycall condition method for the one above (returns true if web

 // application’s signature verifies

 @RemoteMethod (granularity = Granularity.ANYCALL_CONDITION)

 public boolean getAppInstanceCondition (String appp2pUrl)

 throws RemoteException;

 // Redirects to the SNAP application specified in the p2pUrl parameter

 @RemoteMethod (granularity = Granularity.MULTICALL,

 type = SynchronyType.SYNCHRONOUS)

 public Properties redirectToSnapApp (String p2pUrl, String webAppDir,

 IApplication snapSkel)

 throws ApplicationDeploymentException, RemoteException;

206 ANNEX C. SNAP’S INSIGHTS

 // Starts a new database instance on the specified node

 @RemoteMethod (granularity = Granularity.DIRECTCALL,

 type = SynchronyType.SYNCHRONOUS)

 public void startNewDatabaseInstance (dermi.core.NodeHandle nh,

 String dbGroup, int clusterSize) throws RemoteException;

 // Deploys a new SNAP application replica on the specified node

 @RemoteMethod (granularity = Granularity.DIRECTCALL,

 type = SynchronyType.SYNCHRONOUS)

 public Object deploySnapAppReplica (dermi.core.NodeHandle nh, String p2pUrl,

 String webAppDir) throws ApplicationDeploymentException, RemoteException;

 // Checks wether the specified node contains a database instance alive

 @RemoteMethod (granularity = Granularity.DIRECTCALL,

 type = SynchronyType.SYNCHRONOUS)

 public boolean isDatabaseAlive (dermi.core.NodeHandle nh)

 throws RemoteException;

 // Introspection API

 // Gets a listing of all available SNAP web applications

 public Collection<String> getApplications() throws RemoteException;

 // Returns a stub which models a gateway to the specified application

 public ERemote getApplication (String p2pUrl) throws RemoteException;

 // Returns all IP + Port listing of physical nodes in which this SNAP web

 // application is currently running (returns the nodes of the web

 // application cluster)

 @RemoteMethod (granularity = Granularity.MULTICALL,

 type = SynchronyType.SYNCHRONOUS)

 public Collection<String> getInstances() throws RemoteException;

 // Returns all IP + Port listing of physical nodes in which this SNAP web

 // application holds an active database instance

 @RemoteMethod (granularity = Granularity.MULTICALL,

 type = SynchronyType.SYNCHRONOUS)

 public Collection<String> getDatabaseInstances() throws RemoteException;

}

Figure C.1. SNAP’s API. Interface IApplication

Figure C.3 shows SNAP‘s class diagram. As we can see, SNAP uses both p2pCM and

Dermi classes as its foundation elements. We now describe each class and their main

functionalities.

...

// Get list of available SNAP applications

Collection c = app.getApplications();

// Iterate through them and print their name (p2pUrl)

Iterator<String> it = c.iterator();

String appName = "";

while (it.hasNext()) {

 appName = it.next();

 out.println ("Application found: " + appName);

}

// Get the application instance for the last application

C.1 APPLICATION PROGRAMMING INTERFACE 207

IApplication iapp = (IApplication) app.getApplication (appName);

// Print number of instances

out.println ("# of deployed instances for application " + appName + ": ");

out.println (iapp.getInstances().size());

// Print location of instances

out.println ("IP + Port instances: " + iapp.getInstances());

// Print location of database instances

out.println ("Deployed IP + Port DB servers: " + iapp.getDatabaseInstances());

...

Figure C.2. SNAP’s Introspection API usage

C.1.1.1 IApplication

This interface has already been introduced at the beginning of this section. Its purpose is

to provide SNAP‘s remote interface (it extends Dermi‘s ERemote interface). Therefore,

all of SNAP‘s exposed methods are in fact Dermi remote methods.

Figure C.3. SNAP’s Class Diagram

208 ANNEX C. SNAP’S INSIGHTS

C.1.1.2 Application

The Application class is the implementation of the above remote interface in the form of

a DermiRemoteObject. It provides the following core methods:

 getAppInstance() / getAppInstanceCondition(). This is an anycall method which

returns a reference to a local SNAP application instance. If the

getAppInstanceCondition() method verifies (the application is correctly signed),

an URL pointing to the web application is returned.

 redirectToSnapApp(). This method is used to redirect from a p2p-URI style

identifier to a physical HTTP web application, which will normally be the

closest one if it is already running elsewhere. If it is not, it is deployed on the

local webserver instance by calling the deploySnapApp() method.

 startNewDatabaseInstance(). This method allows a new database server to be

instantiated, specifying that maximum cluster size has been reached.

 deploySnapAppReplica(). This method is used to deploy a replica of a SNAP

application onto a specified node.

 isDatabaseAlive(). This method checks whether a database instance is alive on a

specified node.

 ClusteringTimer. This inner task periodically checks the application / database

clustering status and balances it if it notes that more fault tolerance nodes are

required.

 Introspection API methods. These methods have already been described at the

beginning of this section.

C.1.1.3 Context

This is a simple utility class that holds all of SNAP‘s constants.

C.1.1.4 SnapAppStartup

This is an HttpServlet subclass, which serves as the initial SNAP infrastructure load

point. Therefore, any SNAP application is required to load this servlet on startup, by

specifying it on its web.xml deployment descriptor file.

C.1 APPLICATION PROGRAMMING INTERFACE 209

C.1.1.5 StartupServlet

This is an HttpServlet subclass that creates SNAP‘s main application handler. It is

SNAP‘s main web application running on each node. It is responsible for managing all

other SNAP applications running on the same webserver instance.

C.1.1.6 SnapDataSource

The SnapDataSource class extends the java.sql.BasicDataSource class. This is SNAP‘s

way of providing transparent DataSource access to J2EE applications. Therefore, it

overrides the createDataSource() method, and returns a connection to the local

HSQLDB database instance.

Moreover, the getConnection() method is also overridden to return a dynamic proxy

object which encapsulates a java.sql.Connection object. This dynamic proxy class is the

DBInterceptor class.

C.1.1.7 DBInterceptor

The database dynamic proxy class provides a transparent way of performing additional

operations while calling standard java.sql.Connection methods from a J2EE web

application. It intercepts all statement creation routines and, therefore, captures all

java.sql.Statement calls to execute(), executeQuery(), and executeUpdate() methods.

This way, SNAP keeps track of when the last database call was performed, and with this

information it can passivate database instances that have not been used during a

threshold time period.

C.1.1.8 SnapDeployer

The SnapDeployer class models SNAP‘s deployment tool behaviour.

C.1.1.9 Exceptions

Finally, a bunch of exception classes are used within SNAP. These include:

 ApplicationDeploymentException. Thrown when an application cannot be

properly deployed.

 ApplicationMetadataIncompleteException. Thrown whenever the application‘s

metadata is insufficient for deployment.

 NotEnoughClusterMembersException. Thrown when it is impossible to activate

new application instances because there are not enough neighbour nodes

available.

210 ANNEX C. SNAP’S INSIGHTS

 VerificationException. Thrown when an already deployed application does not

match the administrator‘s signature.

C.1.2 The Database Engine: HSQLDB-WAN

So far, we have hardly mentioned the database engine SNAP uses to store persistent

data. In fact, the engine we use is a modified version of the HSQLDB [26] engine, but

adapted to wide-area environments. Therefore, we want all members of a database

cluster belonging to the same SNAP applications to share their data, and all changes

performed to a member of the group to be propagated to all others.

This is the ideal setting in which to develop a p2pCM component which is integrated

into the database engine that performs all communication logic within the same cluster

group. We called this variation of the original database engine HSQLDB-WAN.

Figure C.4 shows HSQLDB-WAN‘s p2pCM integration class diagram. It shows all of

the components that enable remote communication between database instances

belonging to the same cluster group:

 SQLReplicator / SQLReplicatorImpl / SQLReplicatorFactory. This is a p2pCM

component, which provides methods for propagating any SQL write statements

results to all other database instances of the same cluster.

 Membership / MembershipImpl / MembershipData / MembershipFactory. This

is another p2pCM component which helps to keep track of the active members

of the database cluster. This component exposes methods to join, leave, and get

the current alive members of the cluster. It periodically stores this information

on the DHT (by means of the MembershipData state class), and recovers it if no

other component instances for that cluster are active. The component‘s

implementation class (MembershipImpl) also holds a DeadCheckerTask inner

class which removes dead members (allowing later activation of new cluster

members to replace them).

The org.hsqldb.Database class uses both these components to propagate membership

changes and SQL updates to all cluster members by calling the appropriate component

methods.

C.2 APPLICATION PROGRAMMING INTERFACE 211

Figure C.4. HSQLDB-WAN Class Diagram

212 ANNEX C. SNAP’S INSIGHTS

C.2 Programming SNAP

One of the most important features of SNAP which has already been highlighted at the

beginning of this chapter is that it is easy to use. The idea is to facilitate as much as

possible the transitioning process of any client-server based J2EE application to a

SNAP application.

Therefore, already existing J2EE applications can easily be ported to SNAP through an

easy and automated process of signing and packaging (via the SNAPDeployer tool),

which also creates a new XML deployment descriptor file (snap-war.xml). The

administrator can easily deploy static web application contents in the SNAP network

too, without needing to change a line of code.

When dealing with applications which work with relational databases, we have also

tried to make the transition to SNAP as transparent as possible. Developers can choose

to use direct Java Database Connectivity (JDBC) connections (thus making slight

changes in the way the JDBC connection is obtained), or DataSources (where they only

have to update the DataSource‘s Java Naming and Directory Interface (JNDI) name in

the application‘s web.xml file), without touching a line of code.

The idea is to make it easier for developers to use SNAP. In fact, unless they wish to

access native replicated file warehouse features, or p2pCM components, already

existing J2EE applications seamlessly adapt to SNAP with an automatic procedure of

packaging, signature, and deployment.

Now we briefly describe how applications can easily be ported and deployed into

SNAP, and that from the developer‘s perspective there are few requirements.

C.2.1 Web Application Adaptation

Adapting an already existing web application to work with SNAP is a simple process.

There are several kinds of web applications and adaptation modes.

C.2.1.1 Static Web Applications

If your web application is a static one (i.e. includes only static HTML pages, say a home

web page), adaptation is just a matter of replacing the default web page for the one

included in SNAP‘s templates directory (index.jsp). Please note that the default original

web page must be renamed orig_index.html. The process is that SNAP will first load

the index.jsp page, which will initialize SNAP‘s environment, thus automatically

redirecting to orig_index.html, which corresponds to the original static web application

index.

The advantages of this approach is that SNAP will provide load balancing and failover to
your static web applications, so they will be worldwide accessible even if the hosting
server fails.

More specifically, what the new index.jsp page does is this:

C.2 PROGRAMMING SNAP 213

Once this is done you are ready to deploy your static web application onto SNAP.

C.2.1.2 J2EE Web Applications

 Persistence mode: Access to Database via DataSources

In order to adapt a dynamic web application which performs relational database queries

working with container provided DataSources, we must add the following lines to the

application‘s web.xml descriptor file, indicating the initial load of the SNAP‘s

associated instance:

By using SNAP’s datasource configuration, we guarantee that persistence data is
replicated among a determinate number of servers, to guarantee transparent failover
and load balancing.

DataSource configuration will also be modified on the application‘s web.xml descriptor

file by using the default java:comp/env/jdbc/SnapDS JNDI name. However, the

DataSource name and configuration can be modified by opening Jetty‘s Configuration

File (etc/jetty.xml). By following thish approach not a single line of code needs to be

changed in order to port the application to SNAP.

<%@page import="dermi.*, org.planet.snap.*, java.util.*, java.io.*,

 java.net.*;" %>

<%

// Create and register application into SNAP

Application app = new Application (

 InetAddress.getLocalHost().getHostName(), request.getServerPort(),

 Application.getSnapAppConfig (application.getRealPath (

 File.separator)));

application.setAttribute ("snap_webapp", app);

%>

<FRAMESET cols="0%, 100%" FRAMEBORDER="NO" BORDER="0" FRAMESPACING="0">

 <FRAME src="about:blank" SCROLLING="NO" noresize>

 <FRAME src="orig_index.html" noresize>

</FRAMESET>

 <servlet>

 <servlet-name>startup</servlet-name>

 <servlet-class>org.planet.snap.SnapAppStartup</servlet-class>

 <load-on-startup>0</load-on-startup>

 </servlet>

214 ANNEX C. SNAP’S INSIGHTS

Once you have changed the DataSource name, you are ready to deploy your web

application onto SNAP.

 Persistence mode: Direct JDBC Connection to Database

If your application does not use a JDBC connection pool via DataSources, then you

must adapt it only to modify the connection phase so that persistent data is stored and

replicated using SNAP‘s modified HSQLDB bundled version.

The first thing to do is to modify the application‘s web.xml file, as in the previous step

(only to load the startup servlet).

By changing the way connections to the database are made, we benefit from SNAP’s
database replication service, thus guaranteeing that persistence data is replicated
among a determinate number of servers, and transparent failover and load balancing is
achieved.

How can a JDBC connection to the underlying SNAP database be made? Take a look at

the following code snippet:

 <!-- -->

 <!-- Snap Datasource properties. -->

 <!-- + It uses a modified HSQLDB database with replication. -->

 <!-- + No host is specified, and neither port is. -->

 <!-- + Only username and password arguments. -->

 <!-- -->

 <Call name="addService">

 <Arg>

 <New class="org.mortbay.jetty.plus.DefaultDataSourceService">

 <Set name="Name">DataSourceService</Set>

 <Call name="addDataSource">

 <Arg>jdbc/SnapDS</Arg>

 <Arg>

 <New class="org.planet.snap.ds.SnapDataSource">

 <Set name="Username">sa</Set>

 <Set name="Password"></Set>

 </New>

 </Arg>

 </Call>

 </New>

 </Arg>

 </Call>

C.2 PROGRAMMING SNAP 215

First of all, a reference to the underlying SNAP application instance must be obtained.

Next, to get a JDBC connection, simply call the getConnection (user, password)

method from the SNAP application instance. From now on, the rest of the web

application code remains the same.

Once this is done you are ready to deploy your web application into SNAP.

C.2.2 Web Application Deployment

In order to be able to deploy any kind of web application onto SNAP, this application

must be previously approved by the network‘s administrator.

The ideal case is to have the application delivered to the administrator, which will in

turn sign it and make it available to the SNAP community. Note that if an application is

deployed in a SNAP node but it has not been signed by the administrator, it will not

work, since this security aspect is checked every time an application is accessed.

However, let us supose the application has been sent to the administrator (and YOU are

the administrator), and you need to deploy it. The first thing to do is to define a file

named snap-war.xml, which is to be located in the META-INF directory of the web

application.

This file contains SNAP‘s metadata for this application. More specifically, it defines the

persistence type, the clustering factor (the number of nodes where the application will

dynamically be replicated), and database properties. A sample snap-war.xml file is

shown as follows:

<%@page import="dermi.*, org.planet.p2pcm.*, org.planet.snap.*,

 java.util.*, java.io.*, java.net.*, java.sql.*"

%>

<%

Application app = (Application) application.getAttribute ("snapApp");

if (app == null) {

 throw new NullPointerException ("Application not initialized!");

}

// To obtain a SNAP-compatible JDBC connection

Connection con = app.getConnection ("sa", "");

...

%>

216 ANNEX C. SNAP’S INSIGHTS

This is what the entries mean:

 appName – The application‘s name

 appContext – The application‘s context (in Jetty webserver)

 appp2pUrl – Unused entry – to be filled in by SNAPDeployer

 persistence – Persistence type (database) or delete the entry for none

 clustering – Clustering factor: the number of nodes where the application will

dynamically be replicated

 dbInitialPort – Database initial port (subsequent database activations are to be

bound in incremental ports)

 dbDataPath – Path where the database files are to be stored (relative to the

application‘s context)

 dbPassivationThreshold – Minutes of inactivity for database instance

passivation (to free up resources)

All entries should be filled in before trying to deploy the web application. Subsequent

versions of SNAP will have this process integrated with the deployment tool. However,

this step currently needs to be done manually.

The next step is to start the SNAPDeployer tool, in order to deploy the application onto

the SNAP network. If everything is OK, the deployer will connect to the network, and

show its splash screen.

Next, a step-by-step wizard will guide you through the deployment process. It is

important to make a distinction in the options that the wizard presents you with (see

Figure C.5).

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

 <comment>

 SNAP Web-Application descriptor

 </comment>

 <entry key="appName">SNAP TestSuite Application</entry>

 <entry key="appContext">snaptestsuite</entry>

 <entry key="appp2pUrl">p2p://this_entry_is_not_used_now</entry>

 <entry key="persistence">database</entry>

 <entry key="clustering">3</entry>

 <entry key="dbInitialPort">9999</entry>

 <entry key="dbDataPath">/WEB-INF/data/</entry>

 <entry key="dbPassivationThreshold">10</entry>

</properties>

C.2 PROGRAMMING SNAP 217

Figure C.5. SNAP Deployer option window

 Sign and Deploy a new Snap Web Application – This option deploys an

already .WAR packed application onto SNAP.

 Sign and Deploy a non-Snap Web Application – This option deploys a

directory containing a web application onto SNAP.

 Show already deployed Web Applications – This option shows information

about all active and deployed web applications.

 Remove an already deployed Web Application – This option undeploys a

SNAP web application.

The next deployment step generates an administrator‘s public/private key pair (if it is

the first time), or reuses a keystore.rsa file which contains the administrator‘s

public/private key pair (this file should be kept in a safe place).

Finally, and after asking about the application‘s metadata (it is especially important to

assign a correct p2p:// identifier, as this will be used to locate the application via

SNAP‘s decentralized application locator), the application will be signed, repacked and

uploaded to the decentralized SNAP network.

C.2.3 Accessing SNAP applications

Once the application has been deployed on the SNAP network, it is ready to be used.

But first it must be instantiated. A web application is instantiated automatically the first

time it is called. The steps are summarized as follows:

218 ANNEX C. SNAP’S INSIGHTS

 Open a web browser window and connect to your local machine (if you are

hosting a SNAP node), or to a remote machine which is joined to the SNAP

ring. For example: http://localhost:33333

 SNAP‘s home will appear on your screen, and you may now enter the p2p URL

of your recently deployed application. For example: p2p://cpairot-

webpage.urv.net

Figure C.6. SNAP’s Home Page

 Now SNAP checks whether this application has already been instantiated

elsewhere on the network. Since it is the first time, SNAP instantiates it on the

local web server node. Therefore, it loads the SNAP infrastructure for that

application, dynamically activates the database (if the application requires), and

starts replicating the application instance among its k replica nodes, so as to

provide fault tolerance. This process of application instance replication means

that the application is deployed locally on other web server nodes, and it forms a

cluster of replicated web applications. If one of the servers crashes, SNAP

allows the closest one to respond, and the application is still accessible.

http://localhost:33333/

C.2 PROGRAMMING SNAP 219

 After this process (the first time it obviously takes a little longer), SNAP

redirects the browser to the local web application instance, and we can start

working with the application.

 Imagine that the next day we want to continue working with the application. We

follow the same steps and try to access p2p://cpairot-webpage.urv.net. This

time, loading the application does not last as long, since it is already active.

Therefore, we are redirected to the closest webserver and start working with the

application running there.

220 ANNEX C. SNAP’S INSIGHTS

221

Glossary

.NET Framework – The Microsoft .NET Framework is a component of the Microsoft

Windows operating system. It provides a large body of pre-coded solutions to

common program requirements, and manages the execution of programs written

specifically for the framework. The .NET Framework is a key Microsoft

offering, and is intended to be used by most new applications created for the

Windows platform. See DCOM.

Anycast – Anycast is a network addressing and routing scheme whereby data is routed

to the nearest or best destination as viewed by the routing topology. Anycast is

generally used as a way to provide high availability and load balancing for

stateless services such as access to replicated data.

API (Application Programming Interface) – An Application Programming Interface

(API) is the interface that a computer system, library or application provides in

order to allow requests for services to be made of it by other computer programs,

and/or to allow data to be exchanged between them.

Application Level Multicast – Application Level Multicast is a way to provide

multicast when it is not possible to use IP Multicast. Routing is not performed at

the network level, but at the application level. This way, events and messages

are relayed from origin to destination by an application specific component,

called the distributed information bus. See Multicast, IP Multicast, Event Bus.

Aspect-Oriented Programming (AOP) – In software engineering, the programming

paradigms of Aspect-Oriented programming (AOP) and aspect-oriented software

development (AOSD) attempt to aid programmers in the separation of concerns,

specifically crosscutting concerns, as an advance in modularization. AOP does

so using primarily language changes, while AOSD uses a combination of

language, environment, and methodology.

BFS (Breadth-First Search) – Breadth-first search (BFS) is a graph search algorithm

that begins at the root node and explores all the neighboring nodes. Then for

each of those nearest nodes, it explores their unexplored neighbor nodes, and so

on, until it finds the goal.

222 GLOSSARY

Britney Problem, the – The Britney Problem is a common issue in p2p systems that

use distributed hash tables (DHTs) to organize their namespaces. In many DHTs

a given key, such as britney.mpg, is mapped to a single node that will store this

file and serve all requests to it. What occurs is that popular keys get mapped to

single nodes, causing hotspots that get a tremendous number of requests and

therefore cannot serve all client peers interested in the file. See p2p, DHT.

Broadcast – Broadcasting refers to transmitting a packet that will be received

(conceptionally) by every device on the network. In practice, the scope of the

broadcast is limited to a broadcast domain. See Multicast.

CBSD (Component-Based Software Development) – A software engineering

discipline which tries to settle the basis for the design and development of

reusable software component-based distributed applications. It claims that

software components, like the idea of hardware components, used for example in

telecommunications, can ultimately be interchangeable and reliable.

Churn – Within a peer-to-peer network, the churn rate refers to the number of peers

leaving the system during a given period—usually an hour, rather than a year. It

is a significant problem for large-scale systems, as they must maintain consistent

information about peers in the system in order to operate most effectively. For

example, with a high churn rate it may be impossible to index file locations,

making some files inaccessible even though they are available to some peers.

Client/Server Architecture – Client-server is a network architecture which separates

the client from the server. Each instance of the client software can send requests

to a server or application server. There are many different types of servers; some

examples include a file server, terminal server, or mail server. While their

purpose varies somewhat, the basic architecture remains the same.

Clustering (Computer Cluster) – A computer cluster is a group of loosely coupled

computers that work together closely so that in many respects they can be

viewed as though they are a single computer. Clusters are commonly, but not

always, connected through fast local area networks. Clusters are usually

deployed to improve more speed and/or reliability than that provided by a single

computer, while typically being much more cost-effective than single computers

of comparable speed or reliability. J2EE application server vendors define a

computer cluster as a group of machines working together to transparently

provide enterprise services (support for JNDI, EJB, JSP, HttpSession, and

component failover, and so on). See Federation, J2EE.

Component Life Cycle – The time between a component‘s creation (also known as

instantiation) and the moment the component is no longer used (and is

destructed). In between, the component may live through many other stages, like

passivation, where the component‘s state is persisted to secondary memory

storage, activation, where the component‘s state is recreated from secondary

memory storage, and others. See Reusable Component.

Component Model – A distributed component-oriented model is an architecture for

defining components and their interactions. It must provide a packaging

 223

technology for deploying binary component executables. Moreover, it needs a

container framework for injecting life cycle, thus permitting activation and

passivation of component instances. Other services include security,

transactions, persistence, and events. See Reusable Component.

Container – An entity that provides life-cycle management, security, deployment and

runtime services to any distributed component. See Reusable Component.

CORBA (Common Object Request Broker Architecture) – Common Object Request

Broker Architecture (CORBA) is a standard for software componentry, created

and controlled by the Object Management Group (OMG). It defines APIs,

communication protocol, and object/service information models to enable

heterogeneous applications written in various languages running on various

platforms to interoperate. CORBA therefore provides platform and location

transparency for sharing well-defined objects across a distributed computing

platform.

CSCW (Computer Supported Cooperative Work) – Computer Supported

Cooperative Work (CSCW) is a discipline that addresses how collaborative

activities and their coordination can be supported by means of computer

systems.

DCOM (Distributed Component Object Model) – Distributed Component Object

Model (DCOM) is a Microsoft proprietary technology for software components

distributed across several networked computers to communicate with each other.

It extends Microsoft's COM, and provides the communication substrate under

Microsoft's COM+ application server infrastructure. It has been deprecated in

favor of Microsoft .NET. See .NET Framework.

DHT (Distributed Hash Table) – Distributed hash tables (DHTs) are a class of

decentralized distributed systems that partition ownership of a set of keys among

participating nodes, and can efficiently route messages to the unique owner of

any given key. Each node is analogous to an array slot in a hash table. DHTs are

typically designed to scale to large numbers of nodes and to handle continual

node arrivals and failures. See Hash Function.

Distributed Systems – A collection of (probably heterogeneous) automata whose

distribution is transparent to the user so that the system appears as one local

machine. This is in contrast to a network, where the user is aware that there are

several machines, and their location, storage replication, load balancing and

functionality is not transparent.

DNS (Domain Name System) – The Domain Name System (DNS) stores and

associates many types of information with domain names, but most importantly,

it translates domain names (computer hostnames) to IP addresses. It also lists

mail exchange servers accepting e-mail for each domain. In providing a

worldwide keyword-based redirection service, DNS is an essential component of

contemporary Internet use. See IP.

224 GLOSSARY

DSHT (Distributed Sloppy Hash Table) – A Distributed Sloppy Hash Table (DSHT)

is an indexing abstraction based on DHTs which creates self-organizing clusters

of nodes that fetch information from each other to avoid communicating with

more distant or heavily-loaded servers. The sloppy hash table refers to the fact

that any overlay network of this kind is made up of concentric rings of DHTs,

each ring representing a wider and wider geographic range. The DHTs are

composed of nodes all within some latency of each other. It avoids hot spots (the

sloppy part) by only continuing to query progressively larger sized rings if they

are not overburdened — i.e. if there are many hits to the top-most two rings, it

will just ping the close ones, and when it reaches a hit that is overloaded it stops

progressing upward. This therefore decreases hot spots and at the same time

limits the amount of global knowledge. See DHT.

ECL (eduSource Communication Language) – The eduSource Communication

Language (ECL) is a protocol which defines a standard communication language

for educational content repository interoperability. The ECL protocol enables

these repositories to communicate with each other and enables other repositories

and services to become a part of eduSource. The protocol is independent from

existing protocols and enables developers to build universal tools and services

that will enable their users to connect and use services provided by any

repository connected to the eduSource network.

Event Bus (Distributed Information Bus) – The Distributed Information Bus is an

architecture that allows extensibility in distributed systems. This approach

allows for asynchronous communication between senders and receivers. The

event bus is the application which makes this communication possible. See

Distributed Systems, Publish/Subscribe Event System.

Federation – An analogous concept to clustering, but driven at a higher level. A

federated network consists of a number of interconnected clusters, which

communicate via multicast or direct sockets. See Clustering.

Free riding – In economics, collective bargaining, and political science, free riders are

actors who consume more than their fair share of a resource, or shoulder less

than a fair share of the costs of its production. The free rider problem is the

question of how to prevent free riding from taking place, or at least limit its

negative effects.

Grid Computing – Grid computing is a computing model that provides the ability to

perform higher throughput computing by using many networked computers to

model a virtual computer architecture that can distribute process execution

across a parallel infrastructure. Grids use the resources of many separate

computers connected by a network (usually the Internet) to solve large-scale

computation problems.

GUID (Globally Unique Identifier) – A Globally Unique Identifier (GUID) is a

pseudo-random number used in software applications. While each generated

GUID is not guaranteed to be unique, the total number of unique keys (2
128

 or

3.4028×10
38

) is so large that the possibility of the same number being generated

twice is very small.

 225

Hash Function – A hash function is a way of creating a small digital fingerprint from

any kind of data. The function chops and mixes the data to create the fingerprint,

which is often called a hash value. The hash value is commonly represented as a

short string of random-looking letters and numbers. A good hash function is one

that yields few hash collisions in expected input domains. In hash tables and data

processing, collisions prevent data from being distibuished, making records

more costly to find.

HTTP (Hypertext Transfer Protocol) – Hypertext Transfer Protocol (HTTP) is a

method used to transfer or convey information on the World Wide Web. It is a

patented open internet protocol whose original purpose was to provide a way to

publish and receive HTML pages. See WWW.

IP (Internet Protocol) – Internet Protocol (IP) is a network layer protocol in the

internet protocol suite and is encapsulated in a data link layer protocol. As a

lower layer protocol, IP provides the service of communicable unique global

addressing amongst computers.

IP Multicast – The single word Multicast is typically used to refer to IP Multicast,

which is a delivery method in IP networks for efficiently sending datagrams to

multiple receivers at the same time on networks by way of a multicast

destination address. See Multicast, Application Level Multicast.

Java EE (Java Platform, Enterprise Edition, J2EE) – Java Platform, Enterprise

Edition or Java EE (formerly known as Java 2 Platform, Enterprise Edition or

J2EE up to version 1.4) is a programming platform —part of the Java

Platform— for developing and running distributed multitier architecture Java

applications, based largely on modular software components running on an

application server. The Java EE platform is defined by a specification. Like

other Java Community Process specifications, Java EE is also considered

informally to be a standard because providers must agree to certain conformance

requirements in order to declare their products as Java EE compliant; albeit with

no ISO or ECMA standard. See JDBC, JNDI.

JDBC (Java Database Connectivity) – JDBC is an API for the Java programming

language that defines how a client may access a database. It provides methods

for querying and updating data in a database. JDBC is oriented towards

relational databases. See API, J2EE.

JERI (Jini Extensible Remote Invocation) – Jini Extensible Remote Invocation

(JERI) provides programmatic access to each layer of an RMI call via an API

and allows an RMI service deployer to choose the RMI implementation most

suitable in a deployment scenario. JERI also defines a uniform mechanism to

make remote objects available to answer remote method calls (object exporting),

which was not standardized in prior RMI releases. The result of the new features

is that RMI calls can now adhere to any security requirement.

Jini – Jini is a network architecture for constructing distributed systems where scale,

rate of change and complexity of interactions within and between networks are

226 GLOSSARY

extremely important and cannot be satisfactorily addressed by existing

technologies. Jini technology provides a flexible infrastructure for delivering

services in a network and for creating spontaneous interactions between clients

that use these services regardless of their hardware or software implementations.

JMS (Java Message Service) – The Java Message Service (JMS) API is a Java MOM

API for sending messages between two or more clients. JMS is a specification

developed under the Java Community Process as JSR 914. See MOM.

JNDI (Java Naming and Directory Interface) – The Java Naming and Directory

Interface (JNDI) is an API for directory services. It allows clients to discover

and lookup data and objects via a name and, like all Java APIs that interface

with host systems, is independent of the underlying implementation.

Additionally, it specifies a service provider interface (SPI) that allows directory

service implementations to be plugged into the framework. The implementations

may make use of a server, a flat file, or a database; the choice is up to the

vendor. See API, J2EE.

KBR (Key-Based Routing Substrate) – The Key-Based Routing (KBR) substrate is a

common layer in all structured p2p overlay networks which allows for efficient

message delivery based on the message key. Therefore, the message moves

closer to the destination node following an approaching path that depends on the

key‘s value. See p2p, DHT.

Kerberos – Kerberos is a computer network authentication protocol which allows

individuals communicating over an insecure network to prove their identity to

one another in a secure manner. Kerberos prevents eavesdropping or replaying

attacks, and ensures the integrity of the data. Its designers aimed primarily at a

client-server model, and it provides mutual authentication — both the user and

the service verify each other's identity. Kerberos builds on symmetric key

cryptography and requires a trusted third party.

LAN (Local Area Network) – A Local Area Network (LAN) is a computer network

covering a small local area, like a home, office, or small group of buildings such

as a home, office, or college. Current LANs are most likely to be based on

switched Ethernet or Wi-Fi technology running at 10, 100 or 1,000 Mbit/s. The

defining characteristics of LANs in contrast to WANs (wide area networks) are

their much higher data rates, their smaller geographic range, and the fact that

they do not require leased telecommunication lines. See WAN.

LOM (Learning Object Metadata) – Learning Object Metadata (LOM) is a data

model, usually encoded in XML, used to describe a learning object and similar

digital resources used to support learning. The purpose of learning object

metadata is to support the reusability of learning objects, to aid discoverability,

and to facilitate their interoperability, usually in the context of online learning

management systems (LMS).

LPC (Local Procedure Call) – A Local Procedure Call (LPC) is the same as a Remote

Procedure Call where all communication happens on the same computer. See

RPC.

 227

MDS (Monitoring and Discovery System) – The Globus Monitoring and Discovery

System (MDS) is a collection of Web services that monitor and discover the

resources and services available in a grid. In a grid context, resource discovery is

the systematic process of determining which grid resource is the best candidate

at completing a job in the shortest amount of time with the most efficient use of

resources.

MOM (Message Oriented Middleware) – Message-Oriented Middleware (MOM)

comprises a category of inter-application communication software that generally

relies on asynchronous message-passing as opposed to a request/response

metaphor. Most MOM depends on a message queue system, although some

implementations rely on broadcast or on multicast messaging systems.

MP3 (MPEG-1 Audio Layer 3) – MPEG-1 Audio Layer 3, more commonly referred

to as MP3, is the most popular digital audio encoding and lossy compression

format, designed to greatly reduce the amount of data required to represent

audio, yet still sound like a faithful reproduction of the original uncompressed

audio to most listeners.

Multicast – Multicast is the simultaneous delivery of information to a group of

destinations using the most efficient strategy to deliver the messages over each

link of the network only once and only creating copies when the links to the

destinations split. See IP Multicast, Application Level Multicast.

Naming service – A distributed object service which allows objects to be named by

means of binding a name to an object reference. The name binding may be

stored in the naming service, and a client may supply the name to obtain the

desired object reference.

NAT (Network Address Translation) – The process of Network Address Translation

(NAT) involves re-writing the source and/or destination addresses of IP packets

as they pass through a router or firewall. Most systems using NAT do so in order

to enable multiple hosts on a private network to access the Internet using a single

public IP address. According to specifications, routers should not act in this way,

but many network administrators find NAT a convenient technique and use it

widely. Nonetheless, NAT can complicate communication between hosts.

NodeHandle – An overlay network node‘s physical information handle. This

NodeHandle object typically consists of the node‘s IP address and port, and its

NodeId.

NodeId – The node identifier in an overlay network. Keys closest to the node‘s NodeId

are mapped into it.

ObjectWeb Consortium – The ObjectWeb consortium is an international consortium

mainly devoted to producing open source middleware, EAI, e-business,

clustering, grid computing. ObjectWeb is a not-for-profit, international

consortium dedicated to the development of high-quality open-source

228 GLOSSARY

components for distributed applications (Web applications, grid computing,

clusters, business integration, nomadic systems, etc).

OMG (Object Management Group) – Object Management Group (OMG) is a

consortium, originally aimed at setting standards for distributed object-oriented

systems, and now focused on modeling (programs, systems and business

processes) as well as model-based standards in some 20 vertical markets.

Founded in 1989 by eleven companies (including Hewlett-Packard Company,

Apple Computer, American Airlines and Data General), OMG mobilised to

create a cross-compatible distributed object standard. The goal was a common

portable and interoperable object model with methods and data that work using

all types of development environments on all types of platforms. At its founding,

OMG set out to create the initial Common Object Request Broker Architecture

(CORBA) standard which appeared in 1991. OMG has also created the standard

for Unified Modeling Language (UML). It has further expanded into Model

Driven Architecture (MDA), and related set of standards. See CORBA.

p2p (Peer-to-Peer) – Peer-to-Peer (p2p) comprises a class of systems and applications

that employ distributed resources to perform a critical function in a decentralized

manner. The resources encompass computing power, data (storage and content),

network bandwidth, and presence (computers, human, and other resources). The

critical function can be distributed computing, data/content sharing,

communication and collaboration, or platform services. Decentralization may

apply to algorithms, data, and meta-data, or to all of them. This does not

preclude retaining centralization in some parts of the systems and applications if

it meets their requirements.

Plaxton Distributed Search Technique – A randomized lookup algorithm based on

prefix matching used to locate objects in a distributed network in O(log N)

probabilistic time.

Proximity Neighbour Selection (PNS) – Proximity Neighbour Selection (PNS) is a

technique used in overlay networks which organizes nodes‘ internal routing

tables according to network proximity. Therefore, one node‘s neighbours are

chosen depending on the latency between them.

Publish/Subscribe Event System – Publish/Subscribe (or pub/sub) is an asynchronous

messaging paradigm that allows for better scalability and a more dynamic

network topology. Publish/Subscribe is a sibling of the Message Queue

paradigm, and is typically one part of a larger Message-Oriented Middleware

solution. JMS, for example, supports both the Publish/Subscribe and Message

Queue models. In a Publish/Subscribe system, publishers post messages to an

intermediary broker and subscribers register subscriptions with that broker. See

MOM, JMS.

Remote Object Middleware (Distributed Object Middleware) – This middleware

consists of software modules that are designed to work together but which reside

in multiple computer systems throughout the organization. A program in one

machine sends a message to an object in a remote machine to perform some

processing. The results are sent back to the calling machine.

 229

Rendezvous Point – The rendezvous point or root of a multicast group is the

responsible node where all messages are directed when trying to multicast to that

group. It can be considered the root of the multicast tree. Messages are therefore

disseminated efficiently from the rendezvous point to the other members of the

tree. In some cases, the rendezvous point cannot even belong to the multicast

group itself.

Reusable Component – A unit of software application composition with contractually

specified interfaces and explicit context dependencies that can be developed,

acquired, added to the system and composed of other independent components,

in time and space.

RIAA (Recording Industry Association of America) – The Recording Industry

Association of America (or RIAA) is the trade group that represents the

recording industry in the United States. Its members consist of a large number of

private corporate entities such as record labels and distributors, who create and

distribute about 90% of recorded music sold in the US.

RMI (Java Remote Method Invocation) – The Java Remote Method Invocation API,

or Java RMI, is a Java application programming interface for performing the

object equivalent of Remote Procedure Calls. See RPC.

RPC (Remote Procedure Call) – Remote Procedure Call (RPC) is a protocol that

allows a computer program running on one computer to cause a subroutine on

another computer to be executed without the programmer explicitly coding the

details for this interaction. When the software in question is written using object-

oriented principles, RPC may be referred to as remote invocation or remote

method invocation. See LPC, RMI.

Secure Hash Algorithm – The SHA (Secure Hash Algorithm) family is a set of related

cryptographic hash functions. The most commonly used function in the family,

SHA-1, is used in a wide variety of popular security applications and protocols,

including TLS, SSL, PGP, SSH, S/MIME, and IPSec. SHA-1 is considered to be

the successor to MD5, an earlier, widely-used hash function. Both are reportedly

compromised. In some circles, it is suggested that SHA-256 or greater be used

for critical technology. The SHA algorithms were designed by the National

Security Agency (NSA) and published as a US government standard. See Hash

Function.

SOA (Service-Oriented Architecture) – The term Service-Oriented Architecture

(SOA) expresses a perspective of software architecture that defines the use of

services to support the requirements of software users. In an SOA environment,

resources on a network are made available as independent services that can be

accessed without knowledge of their underlying platform implementation. SOA

is usually based on Web services standards that have gained broad industry

acceptance. These standards also provide greater interoperability and some

protection from lock-in to proprietary vendor software. However, SOA can be

implemented using any service-based technology. See Web Service.

230 GLOSSARY

Stateful – Used to refer to remote objects or components which need to store state

information between any of their remote method calls.

Stateless – Used to refer to remote objects or components which do not need to store

state information between any of their remote method calls.

Sun RPC (ONC RPC) – ONC RPC, short for Open Network Computing Remote

Procedure Call, is a widely deployed remote procedure call system. ONC was

originally developed by Sun Microsystems as part of their Network File System

project, and is sometimes referred to as Sun ONC or Sun RPC. See RPC.

TCP (Transmission Control Protocol) – The Transmission Control Protocol (TCP) is

one of the core protocols of the Internet protocol suite. Using TCP, applications

on networked hosts can create connections to one another, over which they can

exchange data in packets. The protocol guarantees reliable and in-order delivery

of data from sender to receiver. TCP also distinguishes data for multiple

connections by concurrent applications.TCP supports many of the Internet's

most popular application protocols and resulting applications. See IP.

TTL (Time to live) – Time to live (TTL) is a limit on the period of time or number of

iterations or transmissions that a unit of data (e.g. a network packet) can

experience before it should be discarded. In theory, time to live is measured in

seconds, although every host that passes the packet must reduce the TTL by at

least one unit. In practice, the TTL field is reduced by one on every hop.

UDP (User Datagram Protocol) – The User Datagram Protocol (UDP) is one of the

core protocols of the Internet Protocol (IP) suite. Using UDP, programs on

networked computers can send short messages sometimes known as datagrams

to one another. UDP does not provide the reliability and ordering guarantees that

TCP does. Datagrams may arrive out of order or go missing without notice.

Without the overhead of checking if every packet actually arrived, UDP is faster

and more efficient for many lightweight or time-sensitive purposes. See TCP, IP.

URI (Uniform Resource Identifier) – A Uniform Resource Identifier (URI) is a

compact string of characters used to identify or name a resource. The main

purpose of this identification is to enable interaction with representations of the

resource over a network, typically the World Wide Web, using specific

protocols. URIs are defined in schemes that create a specific syntax and

associated protocols. See WWW.

WAN (Wide Area Network) – A Wide Area Network (WAN) is a computer network

covering a wide geographical area, involving a vast array of computers. The

best-known example of a WAN is the Internet. WANs are used to connect local

area networks (LANs) together, so that users and computers in one location can

communicate with users and computers in other locations. Traditionally, WANs

have been implemented using one of two technologies: circuit switching or

packet switching. Typical communication links used in WANs are telephone

lines, microwave links and satellite channels. See LAN.

 231

WAR (Web Archive) – A Web Archive (WAR file) is a ZIP file used to distribute and

package the necessary components for a J2EE web application. See J2EE.

Web Service – A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface that is

described in a machine-processable format such as WSDL. Other systems

interact with the Web service in a manner prescribed by its interface using

messages, which may be enclosed in a SOAP envelope. These messages are

typically conveyed using HTTP, and normally comprise XML in conjunction

with other Web-related standards. Software applications written in various

programming languages and running on various platforms can use web services

to exchange data over computer networks like the Internet in a manner similar to

inter-process communication on a single computer. See HTTP, XML, SOA.

WWW (World Wide Web) – The World Wide Web (WWW) is a global, read-write

information space. Text documents, images, multimedia and many other items of

information, referred to as resources, are identified by short, unique, global

identifiers called Uniform Resource Identifiers (URIs) so that each can be found,

accessed and cross-referenced in the simplest possible way. See URI.

XML (eXtensible Markup Language) – The eXtensible Markup Language (XML) is a

World Wide Web Consortium (W3C) recommended general-purpose markup

language for creating special-purpose markup languages capable of describing

many different kinds of data. Its primary purpose is to facilitate the sharing of

data across different systems, particularly systems connected via the Internet.

Languages based on XML are defined in a formal way, allowing programs to

modify and validate documents in these languages without prior knowledge of

their particular form. Another view is that XML is a wide standard to encode

structured information.

XML RPC – XML-RPC is a remote procedure call protocol which uses XML to

encode its calls and HTTP as a transport mechanism. It is a very simple protocol,

defining only a handful of data types and commands, and the entire description

can be printed on two pages of paper. This is in stark contrast to most RPC

systems, in which the standards documents often run into thousands of pages and

require considerable software support in order to be used. See RPC, XML,

HTTP.

232 GLOSSARY

